Quantum criticality the cuprate superconductors and the Ad

  • Slides: 97
Download presentation
Quantum criticality, the cuprate superconductors, and the Ad. S/CFT correspondence Talk online: sachdev. physics.

Quantum criticality, the cuprate superconductors, and the Ad. S/CFT correspondence Talk online: sachdev. physics. harvard. edu HARVARD

Max Metlitski, Harvard Eun Gook Moon, Harvard ar. Xiv: 1001. 1153 HARVARD

Max Metlitski, Harvard Eun Gook Moon, Harvard ar. Xiv: 1001. 1153 HARVARD

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The Ad. S/CFT correspondence Phases of finite density quantum matter at strong coupling

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The Ad. S/CFT correspondence Phases of finite density quantum matter at strong coupling

The cuprate superconductors

The cuprate superconductors

Square lattice antiferromagnet Ground state has long-range Néel order

Square lattice antiferromagnet Ground state has long-range Néel order

Tl. Cu. Cl 3

Tl. Cu. Cl 3

Tl. Cu. Cl 3 An insulator whose spin susceptibility vanishes exponentially as the temperature

Tl. Cu. Cl 3 An insulator whose spin susceptibility vanishes exponentially as the temperature T tends to

Square lattice antiferromagnet Ground state has long-range Néel order

Square lattice antiferromagnet Ground state has long-range Néel order

Square lattice antiferromagnet J J/ Weaken some bonds to induce spin entanglement in a

Square lattice antiferromagnet J J/ Weaken some bonds to induce spin entanglement in a new quantum phase

Square lattice antiferromagnet J J/ Ground state is a “quantum paramagnet” with spins locked

Square lattice antiferromagnet J J/ Ground state is a “quantum paramagnet” with spins locked in valence bond singlets

Pressure in Tl. Cu. Cl 3

Pressure in Tl. Cu. Cl 3

Quantum critical point with non-local entanglement in spin wavefunction

Quantum critical point with non-local entanglement in spin wavefunction

Tl. Cu. Cl 3 at ambient pressure N. Cavadini, G. Heigold, W. Henggeler, A.

Tl. Cu. Cl 3 at ambient pressure N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H. -U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

Tl. Cu. Cl 3 at ambient pressure Sharp spin 1 particle excitation above an

Tl. Cu. Cl 3 at ambient pressure Sharp spin 1 particle excitation above an energy gap (spin gap) N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, H. -U. Güdel, K. Krämer and H. Mutka, Phys. Rev. B 63 172414 (2001).

Spin waves

Spin waves

Spin waves

Spin waves

CFT 3

CFT 3

Spin waves

Spin waves

Spin waves

Spin waves

Tl. Cu. Cl 3 with varying pressure Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert

Tl. Cu. Cl 3 with varying pressure Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond Mc. Morrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Prediction of quantum field theory

Prediction of quantum field theory

Prediction of quantum field theory

Prediction of quantum field theory

Prediction of quantum field theory S. Sachdev, ar. Xiv: 0901. 4103

Prediction of quantum field theory S. Sachdev, ar. Xiv: 0901. 4103

CFT 3

CFT 3

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 Pressure in Tl. Cu.

S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 Pressure in Tl. Cu. Cl 3

CFT 3 at T>0 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411

CFT 3 at T>0 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 Pressure in Tl. Cu. Cl 3

CFT 3 at T>0 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411

CFT 3 at T>0 S. Sachdev and J. Ye, Phys. Rev. Lett. 69, 2411 Pressure in Tl. Cu. Cl 3

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The Ad. S/CFT correspondence Phases of finite density quantum matter at strong coupling

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The Ad. S/CFT correspondence Phases of finite density quantum matter at strong coupling

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal

C A B D

C A B D

C A B D Strong anisotropy of electronic states between x and y directions:

C A B D Strong anisotropy of electronic states between x and y directions: Electronic “Ising-nematic” order

Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor R. Daou, J.

Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor R. Daou, J. Chang, David Le. Boeuf, Olivier Cyr-Choiniere, Francis Laliberte, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer Nature, 463, 519 (2010).

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering y x

Quantum criticality of Ising-nematic ordering or

Quantum criticality of Ising-nematic ordering or

Quantum criticality of Ising-nematic ordering TI-n Quantum critical

Quantum criticality of Ising-nematic ordering TI-n Quantum critical

Quantum criticality of Ising-nematic ordering TI-n Quantum critical Classical d=2 Ising criticality

Quantum criticality of Ising-nematic ordering TI-n Quantum critical Classical d=2 Ising criticality

Quantum criticality of Ising-nematic ordering TI-n Quantum critical Classical d=2 Ising criticality D=2+1 Ising

Quantum criticality of Ising-nematic ordering TI-n Quantum critical Classical d=2 Ising criticality D=2+1 Ising criticality ?

Quantum criticality of Ising-nematic ordering TI-n Quantum critical Classical d=2 Ising criticality D=2+1 Ising

Quantum criticality of Ising-nematic ordering TI-n Quantum critical Classical d=2 Ising criticality D=2+1 Ising criticality ?

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange

Central ingredients in cuprate phase diagram: antiferromagnetism, superconductivity, and change in Fermi surface Strange Metal

Quantum criticality of Ising-nematic ordering TI-n Quantum critical

Quantum criticality of Ising-nematic ordering TI-n Quantum critical

Quantum criticality of Ising-nematic ordering TI-n Strange Quantum Metal critical?

Quantum criticality of Ising-nematic ordering TI-n Strange Quantum Metal critical?

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The Ad. S/CFT correspondence Phases of finite density quantum matter at strong coupling

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering

Outline 1. Coupled dimer antiferromagnets Introduction to quantum criticality 2. Theory of Ising-nematic ordering in the cuprate metals Strongly-coupled field theory 3. The Ad. S/CFT correspondence Phases of finite density quantum matter at strong coupling

e. g. Graphene at zero bias

e. g. Graphene at zero bias

e. g. Graphene at zero bias

e. g. Graphene at zero bias

e. g. Graphene at non-zero bias

e. g. Graphene at non-zero bias

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space Maldacena, Gubser, Klebanov, Polyakov, Witten

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space A 2+1 dimensional system at its quantum critical point Maldacena, Gubser, Klebanov, Polyakov, Witten

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space Black hole temperature = temperature of quantum criticality Quantum criticality in 2+1 dimensions Maldacena, Gubser, Klebanov, Polyakov, Witten

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space Black hole entropy = entropy of quantum criticality Quantum criticality in 2+1 dimensions Strominger, Vafa

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space Quantum critical dynamics = waves in curved space Quantum criticality in 2+1 dimensions Maldacena, Gubser, Klebanov, Polyakov, Witten

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space Friction of quantum criticality = waves falling into black hole Quantum criticality in 2+1 dimensions Kovtun, Policastro, Son

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional

Ad. S/CFT correspondence The quantum theory of a black hole in a 3+1 dimensional negatively curved Ad. S universe is holographically represented by a CFT (the theory of a quantum critical point) in 2+1 dimensions 3+1 dimensional Ad. S space Friction of quantum criticality = waves falling into black hole Quantum criticality in 2+1 dimensions Kovtun, Policastro, Son

J. Mc. Greevy, ar. Xiv 0909. 0518

J. Mc. Greevy, ar. Xiv 0909. 0518

Examine free energy and Green’s function of a probe particle T. Faulkner, H. Liu,

Examine free energy and Green’s function of a probe particle T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694

Short time behavior depends upon conformal Ad. S 4 geometry near boundary T. Faulkner,

Short time behavior depends upon conformal Ad. S 4 geometry near boundary T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694

Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu,

Long time behavior depends upon near-horizon geometry of black hole T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694

Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner,

Radial direction of gravity theory is measure of energy scale in CFT T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694

Infrared physics of Fermi surface is linked to the near horizon Ad. S 2

Infrared physics of Fermi surface is linked to the near horizon Ad. S 2 geometry of Reissner-Nordstrom black hole T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh,

Ad. S 4 Geometric interpretation of RG flow T. Faulkner, H. Liu, J. Mc.

Ad. S 4 Geometric interpretation of RG flow T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh,

Ad. S 2 x R 2 Geometric interpretation of RG flow T. Faulkner, H.

Ad. S 2 x R 2 Geometric interpretation of RG flow T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh,

Green’s function of a fermion T. Faulkner, H. Liu, J. Mc. Greevy, and D.

Green’s function of a fermion T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694 See also S. -S. Lee, Phys. Rev. D 79, 086006 (2009); M. Cubrovic, J. Zaanen, and K. Schalm, Science 325, 439 (2009); F. Denef, S. A. Hartnoll, and S. Sachdev, Phys. Rev. D 80,

Green’s function of a fermion T. Faulkner, H. Liu, J. Mc. Greevy, and D.

Green’s function of a fermion T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694 Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point

Green’s function of a fermion T. Faulkner, H. Liu, J. Mc. Greevy, and D.

Green’s function of a fermion T. Faulkner, H. Liu, J. Mc. Greevy, and D. Vegh, ar. Xiv: 0907. 2694 Similar to our theory of the singular Fermi surface near the Ising-nematic quantum critical point

Conclusions Theories for the onset of Isingnematic order (and spin density wave order) in

Conclusions Theories for the onset of Isingnematic order (and spin density wave order) in metals are strongly coupled in two dimensions

Conclusions The Ad. S/CFT offers promise in providing a new understanding of strongly interacting

Conclusions The Ad. S/CFT offers promise in providing a new understanding of strongly interacting quantum matter at non-zero density