Neutrinos and the stars Neutrinos and the Stars

  • Slides: 102
Download presentation
Neutrinos and the stars Neutrinos and the Stars Georg Raffelt, MPI for Physics Lectures

Neutrinos and the stars Neutrinos and the Stars Georg Raffelt, MPI for Physics Lectures at the Topical Seminar Neutrino Physics & Astrophysics 17 -21 Sept 2008, Beijing, China Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Where do Neutrinos Appear in Nature? Earth Crust (Natural Radioactivity) Sun Nuclear Reactors Supernovae

Where do Neutrinos Appear in Nature? Earth Crust (Natural Radioactivity) Sun Nuclear Reactors Supernovae (Stellar Collapse) SN 1987 A Particle Accelerators Cosmic Big Bang (Today 330 n/cm 3) Indirect Evidence Earth Atmosphere (Cosmic Rays) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Astrophysical Accelerators Soon ? Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Where do Neutrinos Appear in Nature? Neutrinos from nuclear reactions: Energies 1 -20 Me.

Where do Neutrinos Appear in Nature? Neutrinos from nuclear reactions: Energies 1 -20 Me. V Quasi thermal sources Supernova: T ~ few Me. V “Beam dump neutrinos” • High-energy protons hit matter or photons • Produce secondary p • Neutrinos from pion decay p m + n m m e + n m + n e • Energies ≫ Ge. V Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Big-Bang Neutrinos: Very small energies today (cosmic red shift) Like matter today Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Where do Neutrinos Appear in Nature? Low-energy neutrino astronomy (including geo-neutrinos) Energies ~ 1

Where do Neutrinos Appear in Nature? Low-energy neutrino astronomy (including geo-neutrinos) Energies ~ 1 -50 Me. V Long-baseline neutrino oscillation experiments with • Reactor neutrinos • Neutrino beams from accelerators • Precision cosmology & limit on neutrino mass • Big-bang nucleosynthesis • Leptogenesis High-energy neutrino astronomy Closely related to cosmic-ray physics Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun Helium Reactionchains Energy 26. 7 Me. V Solar radiation: 98

Neutrinos from the Sun Helium Reactionchains Energy 26. 7 Me. V Solar radiation: 98 % light 2 % neutrinos At Earth 66 billion neutrinos/cm 2 sec Hans Bethe (1906 -2005, Nobel prize 1967) Thermonuclear reaction chains (1938) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Bethe’s Classic Paper on Nuclear Reactions in Stars No neutrinos from nuclear reactions in

Bethe’s Classic Paper on Nuclear Reactions in Stars No neutrinos from nuclear reactions in 1938 … Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Gamow & Schoenberg, Phys. Rev. 58: 1117 (1940) Georg Raffelt, Max-Planck-Institut für Physik, München,

Gamow & Schoenberg, Phys. Rev. 58: 1117 (1940) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Gamow & Schoenberg 2 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics &

Gamow & Schoenberg 2 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Sun Glasses for Neutrinos? 8. 3 light minutes Several light years of lead needed

Sun Glasses for Neutrinos? 8. 3 light minutes Several light years of lead needed to shield solar neutrinos Bethe & Peierls 1934: “… this evidently means that one will never be able to observe a neutrino. ” Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

First Detection (1954 - 1956) Clyde Cowan (1919 – 1974) Anti-Electron Neutrinos from Hanford

First Detection (1954 - 1956) Clyde Cowan (1919 – 1974) Anti-Electron Neutrinos from Hanford Nuclear Reactor Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Fred Reines (1918 – 1998) Nobel prize 1995 n Detector prototype Cd g g p e+ e- 3 Gammas in coincidence g Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

First Measurement of Solar Neutrinos Inverse beta decay of chlorine 600 tons of Perchloroethylene

First Measurement of Solar Neutrinos Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino observatory (1967 -2002) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun Solar Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino

Neutrinos from the Sun Solar Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Hydrogen burning: Proton-Proton Chains < 0. 420 Me. V 1. 442 Me. V 100%

Hydrogen burning: Proton-Proton Chains < 0. 420 Me. V 1. 442 Me. V 100% PP-I 0. 862 Me. V 0. 24% 85% 15% 90% 10% hep 0. 02% < 18. 8 Me. V 0. 384 Me. V < 15 Me. V PP-II Georg Raffelt, Max-Planck-Institut für Physik, München, Germany PP-III Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Solar Neutrino Spectrum Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics,

Solar Neutrino Spectrum Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Hydrogen Burning: CNO Cycle (p, a) (p, g) (p, g) Georg Raffelt, Max-Planck-Institut für

Hydrogen Burning: CNO Cycle (p, a) (p, g) (p, g) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Missing Neutrinos from the Sun Homestake Chlorine 8 B Calculation of expected experimental counting

Missing Neutrinos from the Sun Homestake Chlorine 8 B Calculation of expected experimental counting rate from various source reactions John Bahcall 1934 - 2005 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany CNO 7 Be Measurement (1970 – 1995) Raymond Davis Jr. 1914 - 2006 Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Results of Chlorine Experiment Average Rate Average (1970 -1994) 2. 56 0. 16 stat

Results of Chlorine Experiment Average Rate Average (1970 -1994) 2. 56 0. 16 stat 0. 16 sys SNU (SNU = Solar Neutrino Unit = 1 Absorption / sec / 1036 Atoms) Theoretical Prediction 6 -9 SNU “Solar Neutrino Problem” since 1968 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrino Flavor Oscillations Two-flavor mixing Each mass eigenstate propagates as with Phase difference Probability

Neutrino Flavor Oscillations Two-flavor mixing Each mass eigenstate propagates as with Phase difference Probability implies flavor oscillations ne nm sin 2(2 q) z Oscillation Length Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Cherenkov Effect Elastic scattering or CC reaction Light Electron or Muon (Charged Particle) Light

Cherenkov Effect Elastic scattering or CC reaction Light Electron or Muon (Charged Particle) Light Cherenkov Ring Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Ne utr ino Water Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Super-Kamiokande Neutrino Detector 42 m 39. 3 m Georg Raffelt, Max-Planck-Institut für Physik, München,

Super-Kamiokande Neutrino Detector 42 m 39. 3 m Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. (1914 - 2006) Masatoshi

2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. (1914 - 2006) Masatoshi Koshiba (*1926) “for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos” Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Solar Neutrino Spectrum 7 -Be line measured by Borexino (since 2007) Georg Raffelt, Max-Planck-Institut

Solar Neutrino Spectrum 7 -Be line measured by Borexino (since 2007) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Solar Neutrino Spectroscopy with BOREXINO • Neutrino electron scattering • Liquid scintillator technology (~

Solar Neutrino Spectroscopy with BOREXINO • Neutrino electron scattering • Liquid scintillator technology (~ 300 tons) • Low energy threshold (~ 60 ke. V) • Online since 16 May 2007 • Expected without flavor oscillations 75 ± 4 counts/100 t/d • Expected with oscillations 49 ± 4 counts/100 t/d • BOREXINO result (May 2008) 49 ± 3 stat ± 4 sys cnts/100 t/d ar. Xiv: 0805. 3843 (25 May 2008) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Next Steps in Borexino • Collect more statistics of Beryllium line • Seasonal variation

Next Steps in Borexino • Collect more statistics of Beryllium line • Seasonal variation of rate (Earth orbit eccentricity) • Measure neutrinos from the CNO reaction chain • Information about solar metal abundance Measure geo-neutrinos (from natural radioactivity in the Earth crust) Approx. 7 -17 events/year Main background: Reactors ~ 20 events/year Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Geo Neutrinos: Why and What? We know surprisingly little about the interior of the

Geo Neutrinos: Why and What? We know surprisingly little about the interior of the Earth: • Deepest bore hole ~ 12 km • Samples from the crust are available for chemical analysis (e. g. vulcanoes) • Seismology reconstructs density profile throughout the Earth • Heat flow from measured temperature gradients 30 -44 TW (BSE canonical model, based on cosmo-chemical arguments, predicts ~ 19 TW from crust and mantle, none from core) • Neutrinos escape freely • Carry information about chemical composition, radioactive heat production, or even a putative natural reactor at the core Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Expected Geo Neutrino Fluxes S. Dye, Talk 5/25/2006 Baltimore Georg Raffelt, Max-Planck-Institut für Physik,

Expected Geo Neutrino Fluxes S. Dye, Talk 5/25/2006 Baltimore Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Geo Neutrinos Predicted geo neutrino flux Kam. LAND scintillator detector (1 kton) Reactor background

Geo Neutrinos Predicted geo neutrino flux Kam. LAND scintillator detector (1 kton) Reactor background Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Kamland Observation of Geoneutrinos • First tentative observation of geoneutrinos at Kamland in 2005

Kamland Observation of Geoneutrinos • First tentative observation of geoneutrinos at Kamland in 2005 (~ 2 sigma effect) • Very difficult because of large background of reactor neutrinos (is main purpose for neutrino oscillations) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun Solar Models Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino

Neutrinos from the Sun Solar Models Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Equations of Stellar Structure Assume spherical symmetry and static structure (neglect kinetic energy) Excludes:

Equations of Stellar Structure Assume spherical symmetry and static structure (neglect kinetic energy) Excludes: Rotation, convection, magnetic fields, supernova-dynamics, … Hydrostatic equilibrium Energy conservation Energy transfer r P GN r Mr Lr e Radius from center Pressure Newton’s constant Mass density Integrated mass up to r Luminosity (energy flux) Local rate of energy generation [erg/g/s] Opacity Literature • Clayton: Principles of stellar evolution and nucleosynthesis (Univ. Chicago Press 1968) • Kippenhahn & Weigert: Stellar structure and evolution (Springer 1990) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Radiative opacity Electron conduction Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Convection in Main-Sequence Stars Sun Kippenhahn & Weigert, Stellar Structure and Evolution Georg Raffelt,

Convection in Main-Sequence Stars Sun Kippenhahn & Weigert, Stellar Structure and Evolution Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Virial Theorem and Hydrostatic Equilibrium Hydrostatic equilibrium Integrate both sides L. h. s. partial

Virial Theorem and Hydrostatic Equilibrium Hydrostatic equilibrium Integrate both sides L. h. s. partial integration with P = 0 at surface R Classical monatomic gas: (U density of internal energy) Average energy of single “atoms” of the gas Virial Theorem Most important tool to understand self-gravitating systems Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Virial Theorem Applied to the Sun Virial Theorem Approximate Sun as a homogeneous sphere

Virial Theorem Applied to the Sun Virial Theorem Approximate Sun as a homogeneous sphere with Mass Radius Gravitational potential energy of a proton near center of the sphere Thermal velocity distribution Central temperature from standard solar models Estimated temperature T = 1. 1 ke. V Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Constructing a Solar Model: Fixed Inputs Solve stellar structure equations with good microphysics, starting

Constructing a Solar Model: Fixed Inputs Solve stellar structure equations with good microphysics, starting from a zero-age main-sequence model (chemically homogeneous star) to present age Fixed quantities Solar mass M⊙ = 1. 989 1033 g 0. 1% Kepler’s 3 rd law Solar age t⊙ = 4. 57 109 yrs 0. 5% Meteorites Quantities to match Solar luminosity Solar radius Solar metals/hydrogen ratio L⊙ = 3. 842 1033 erg s-1 0. 4% Solar constant R⊙ = 6. 9598 1010 cm 0. 1% Angular diameter (Z/X)⊙ = 0. 0229 Photosphere and meteorites Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Constructing a Solar Model: Free Parameters 3 free parameters • Convection theory has 1

Constructing a Solar Model: Free Parameters 3 free parameters • Convection theory has 1 free parameter: Mixing length parameter a. MLT determines the temperature stratification where convection is not adiabatic (upper layers of solar envelope) • 2 of the 3 quantities determining the initial composition: Xini, Yini, Zini (linked by Xini + Yini + Zini = 1). Individual elements grouped in Zini have relative abundances given by solar abundance measurements (e. g. GS 98, AGS 05) • Construct a 1 M⊙ initial model with Xini, Zini, (Yini = 1 -– Xini - Zini) and a. MLT • evolve it for the solar age t⊙ • match (Z/X)⊙, L⊙ and R⊙ to better than one part in 105 Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Standard Solar Model Output Information Eight neutrino fluxes: production profiles and integrated values. Only

Standard Solar Model Output Information Eight neutrino fluxes: production profiles and integrated values. Only 8 B flux directly measured (SNO) so far Chemical profiles X(r), Y(r), Zi(r) electron and neutron density profiles (needed for matter effects in neutrino studies) Thermodynamic quantities as a function of radius: T, P, density (r), sound speed (c) Surface helium abundance Ysurf (Z/X and 1 = X + Y + Z leave 1 degree of freedom) Depth of the convective envelope, RCZ Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Standard Solar Model: Internal Structure Temperature Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Density

Standard Solar Model: Internal Structure Temperature Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Density Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun Helioseismology and the New Opacity Problem Georg Raffelt, Max-Planck-Institut für

Neutrinos from the Sun Helioseismology and the New Opacity Problem Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Helioseismology: Sun as a Pulsating Star • Discovery of oscillations: Leighton et al. (1962)

Helioseismology: Sun as a Pulsating Star • Discovery of oscillations: Leighton et al. (1962) • Sun oscillates in > 105 eigenmodes • Frequencies of order m. Hz (5 -min oscillations) • Individual modes characterized by radial n, angular l and longitudinal m numbers Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Helioseismology: p-Modes • Solar oscillations are acoustic waves (p-modes, pressure is the restoring force)

Helioseismology: p-Modes • Solar oscillations are acoustic waves (p-modes, pressure is the restoring force) stochastically excited by convective motions • Outer turning-point located close to temperature inversion layer • Inner turning-point varies, strongly depends on l (centrifugal barrier) Credit: Jørgen Christensen-Dalsgaard Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Examples for Solar Oscillations + + = http: //astro. phys. au. dk/helio_outreach/english/ Georg Raffelt,

Examples for Solar Oscillations + + = http: //astro. phys. au. dk/helio_outreach/english/ Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Helioseismology: Observations • Doppler observations of spectral lines measure velocities of a few cm/s

Helioseismology: Observations • Doppler observations of spectral lines measure velocities of a few cm/s • Differences in the frequencies of order m. Hz • Very long observations needed. Bi. SON network (low-l modes) has data for 5000 days • Relative accuracy in frequencies 10 -5 Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Helioseismology: Comparison with Solar Models • Oscillation frequencies depend on r, P, g, c

Helioseismology: Comparison with Solar Models • Oscillation frequencies depend on r, P, g, c • Inversion problem: From measured frequencies and from a reference solar model determine solar structure • Output of inversion procedure: dc 2(r), dr(r), RCZ, YSURF Relative sound-speed difference between helioseismological model and standard solar model Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

New Solar Opacities (Asplund, Grevesse & Sauval 2005) • Large change in solar composition:

New Solar Opacities (Asplund, Grevesse & Sauval 2005) • Large change in solar composition: Mostly reduction in C, N, O, Ne • Results presented in many papers by the “Asplund group” • Summarized in Asplund, Grevesse & Sauval (2005) Authors (Z/X)⊙ Main changes (dex) Grevesse 1984 0. 0277 Anders & Grevesse 1989 0. 0267 Grevesse & Noels 1993 0. 0245 Grevesse & Sauval 1998 0. 0229 DC = -0. 04, DN = -0. 07, DO = -0. 1 0. 0165 DC = -0. 13, DN = -0. 14, DO = -0. 17 DNe = -0. 24, DSi = -0. 05 (affects meteoritic abundances) Asplund, Grevesse & Sauval 2005 DC = -0. 1, DN = +0. 06 Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Origin of Changes Spectral lines from solar photosphere and corona • Improved modeling 3

Origin of Changes Spectral lines from solar photosphere and corona • Improved modeling 3 D model atmospheres MHD equations solved NLTE effects accounted for in most cases • Improved data Better selection of spectral lines Previous sets had blended lines (e. g. oxygen line blended with nickel line) • Volatile elements do not aggregate easily into solid bodies e. g. C, N, O, Ne, Ar only in solar spectrum Meteorites • Refractory elements, e. g. Mg, Si, S, Fe, Ni both in solar spectrum and meteorites meteoritic measurements more robust Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Consequences of New Element Abundances • Much improved modeling What is good • Different

Consequences of New Element Abundances • Much improved modeling What is good • Different lines of same element give same abundance (e. g. CO and CH lines) • Sun has now similar composition to solar neighborhood New problems • Agreement between helioseismology and SSM very much degraded • Was previous agreement a coincidence? Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Standard Solar Model 2005: Old and New Opacity Sound Speed Density Old: BS 05

Standard Solar Model 2005: Old and New Opacity Sound Speed Density Old: BS 05 (GS 98) New: BS 05 (ASG 05) Helioseismology RCZ 0. 713 0. 728 0. 713 ± 0. 001 YSURF 0. 243 0. 229 0. 2485 ± 0. 0035 <dc> 0. 001 0. 005 --- <dr> 0. 012 0. 044 --- Adapted from A. Serenelli’s lectures at Scottish Universities Summer School in Physics 2006 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Old and New Neutrino Fluxes Old: BS 05 (GS 98) New: BS 05 (AGS

Old and New Neutrino Fluxes Old: BS 05 (GS 98) New: BS 05 (AGS 05) Measurement (SNO) Flux cm-2 s-1 Error % 4. 99 106 6. 6 Flux cm-2 s-1 Error % pp 5. 99 1010 0. 9 6. 06 1010 0. 7 pep 1. 42 108 1. 5 1. 45 108 1. 1 hep 7. 93 103 15. 5 8. 25 103 15. 5 7 Be 4. 84 109 10. 5 4. 34 109 9. 3 8 B 5. 69 106 +17 -15 4. 51 106 +13 -11 13 N 3. 05 108 +36 -27 2. 00 108 +15 -13 15 O 2. 31 108 +37 -27 1. 44 108 +17 -14 17 F 5. 84 106 +72 -42 3. 25 106 +17 -14 Cl (SNU) 8. 12 6. 6 Ga (SNU) 126. 1 118. 9 Bahcall, Serenelli & Basu (astro-ph/0412440 & astro-ph/0511337) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun Very Low-Energy Solar Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München,

Neutrinos from the Sun Very Low-Energy Solar Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from Thermal Plasma Processes Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung These processes

Neutrinos from Thermal Plasma Processes Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung These processes first discussed in 1961 -63 after V-A theory Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Solar Neutrinos from Compton Process Cross section (non-relativistic limit) Photo (Compton) Volume energy loss

Solar Neutrinos from Compton Process Cross section (non-relativistic limit) Photo (Compton) Volume energy loss rate Energy loss rate per unit mass To be compared with nuclear energy generation rate in the Sun Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Thermal vs. Nuclear Neutrinos from the Sun Haxton & Lin, The very low energy

Thermal vs. Nuclear Neutrinos from the Sun Haxton & Lin, The very low energy solar flux of electron and heavy-flavor neutrinos and anti-neutrinos, nucl-th/0006055 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun Search for Solar Axions Georg Raffelt, Max-Planck-Institut für Physik, München,

Neutrinos from the Sun Search for Solar Axions Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Search for Solar Axions Axion Helioscope (Sikivie 1983) Axion-Photon-Oscillation Primakoff production a g Axion

Search for Solar Axions Axion Helioscope (Sikivie 1983) Axion-Photon-Oscillation Primakoff production a g Axion flux N a Magnet g S Sun èTokyo Axion Helioscope (“Sumico”) (Results since 1998, up again 2008) èCERN Axion Solar Telescope (CAST) (Data since 2003) Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, . . . ) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Tokyo Axion Helioscope (“Sumico”) ~3 m S. Moriyama, M. Minowa, T. Namba, Y. Inoue,

Tokyo Axion Helioscope (“Sumico”) ~3 m S. Moriyama, M. Minowa, T. Namba, Y. Inoue, Y. Takasu & A. Yamamoto, PLB 434 (1998) 147 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

LHC Magnet Mounted as a Telescope to Follow the Sun Georg Raffelt, Max-Planck-Institut für

LHC Magnet Mounted as a Telescope to Follow the Sun Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

CAST at CERN Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics,

CAST at CERN Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Limits from CAST-I and CAST-II CAST-I results: PRL 94: 121301 (2005) and JCAP 0704

Limits from CAST-I and CAST-II CAST-I results: PRL 94: 121301 (2005) and JCAP 0704 (2007) 010 CAST-II results (He-4 filling): preliminary Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from the Sun High-Energy Neutrinos from the Sun Georg Raffelt, Max-Planck-Institut für Physik,

Neutrinos from the Sun High-Energy Neutrinos from the Sun Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Search for WIMP Dark Matter Direct Method (Laboratory Experiments) Galactic dark matter particle (e.

Search for WIMP Dark Matter Direct Method (Laboratory Experiments) Galactic dark matter particle (e. g. neutralino) Crystal Energy deposition Recoil energy (few ke. V) is measured by • Ionisation • Scintillation • Cryogenic Indirect Method (Neutrino Telescopes) Galactic dark matter particles are accreted Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Annihilation Sun High-energy neutrinos (Ge. V-Te. V) can be measured Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Ice. Cube Neutrino Telescope at the South Pole • 1 km 3 antarctic ice,

Ice. Cube Neutrino Telescope at the South Pole • 1 km 3 antarctic ice, instrumented with 4800 photomultipliers • 40 of 80 strings installed (2008) • Completion until 2011 foreseen Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Muon Flux from WIMP Annihilation in the Sun Georg Raffelt, Max-Planck-Institut für Physik, München,

Muon Flux from WIMP Annihilation in the Sun Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

High-Energy Neutrinos from the Sun Ingelman & Thunman, High Energy Neutrino Production by Cosmic

High-Energy Neutrinos from the Sun Ingelman & Thunman, High Energy Neutrino Production by Cosmic Ray Interactions in the Sun [hep-ph/9604288] Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos (and other Particles) from the Sun Thermal plasma reactions E ~ 1 e.

Neutrinos (and other Particles) from the Sun Thermal plasma reactions E ~ 1 e. V - 30 ke. V No apparent way to measure Nuclear burning reactions E ~ 0. 1 - 18 Me. V Routine detailed measurements Cosmic-ray interactions in the Sun E ~ 10 - 109 Ge. V Future high-E neutrino telescopes (? ) Dark matter annihilation in the Sun E ~ Ge. V - Te. V (? ) Future high-E neutrino telescopes (? ) New particles, notably axions Are searched with CAST & Sumico Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Basics of Stellar Evolution Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics &

Basics of Stellar Evolution Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Equations of Stellar Structure Assume spherical symmetry and static structure (neglect kinetic energy) Excludes:

Equations of Stellar Structure Assume spherical symmetry and static structure (neglect kinetic energy) Excludes: Rotation, convection, magnetic fields, supernova-dynamics, … Hydrostatic equilibrium Energy conservation Energy transfer r P GN r Mr Lr e Radius from center Pressure Newton’s constant Mass density Integrated mass up to r Luminosity (energy flux) Local rate of energy generation [erg/g/s] Opacity Literature • Clayton: Principles of stellar evolution and nucleosynthesis (Univ. Chicago Press 1968) • Kippenhahn & Weigert: Stellar structure and evolution (Springer 1990) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Radiative opacity Electron conduction Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Nuclear Binding Energy Fe Mass Number Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino

Nuclear Binding Energy Fe Mass Number Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Thermonuclear Reactions and Gamow Peak Coulomb repulsion prevents nuclear reactions, except for Gamow tunneling

Thermonuclear Reactions and Gamow Peak Coulomb repulsion prevents nuclear reactions, except for Gamow tunneling Tunneling probability With Sommerfeld parameter Parameterize cross section with astrophysical S-factor LUNA Collaboration, nucl-ex/9902004 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Main Nuclear Burnings Hydrogen burning 4 p + 2 e- 4 He + 2

Main Nuclear Burnings Hydrogen burning 4 p + 2 e- 4 He + 2 ne • Proceeds by pp chains and CNO cycle • No higher elements are formed because no stable isotope with mass number 8 • Neutrinos from p n conversion • Typical temperatures: 107 K (~1 ke. V) • Each type of burning occurs at a very different T but a broad range of densities • Never co-exist in the same location Helium burning 4 He + 4 He 8 Be + 4 He 12 C “Triple alpha reaction” because 8 Be unstable, builds up with concentration ~ 10 -9 12 C + 4 He 16 O + 4 He 20 Ne Typical temperatures: 108 K (~10 ke. V) Carbon burning Many reactions, for example 12 C + 12 C 23 Na + p or 20 Ne + 4 He etc Typical temperatures: 109 K (~100 ke. V) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Hydrogen Exhaustion in a Main-Sequence Star Main-sequence star Hydrogen Burning Georg Raffelt, Max-Planck-Institut für

Hydrogen Exhaustion in a Main-Sequence Star Main-sequence star Hydrogen Burning Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Helium-burning star Helium Burning Hydrogen Burning Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Burning Phases of a 15 Solar-Mass Star Burning Phase Dominant Process Hydrogen H He

Burning Phases of a 15 Solar-Mass Star Burning Phase Dominant Process Hydrogen H He Helium He C, O Carbon Tc rc [ke. V] [g/cm 3] Ln/Lg - Duration [years] 1. 2 107 5. 9 2. 1 14 1. 3 103 6. 0 1. 7 10 -5 1. 3 106 C Ne, Mg 53 1. 7 105 8. 6 1. 0 6. 3 103 Neon Ne O, Mg 110 1. 6 107 9. 6 1. 8 103 7. 0 Oxygen O Si 160 9. 7 107 9. 6 2. 1 104 1. 7 Silicon Si Fe, Ni 270 2. 3 108 9. 6 9. 2 105 6 days Georg Raffelt, Max-Planck-Institut für Physik, München, Germany 3 Lg [104 Lsun] Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from Thermal Plasma Processes Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung These processes

Neutrinos from Thermal Plasma Processes Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung These processes first discussed in 1961 -63 after V-A theory Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrino Energy Loss Rates Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics &

Neutrino Energy Loss Rates Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Existence of Direct Neutrino-Electron Coupling Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics

Existence of Direct Neutrino-Electron Coupling Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Self-Regulated Nuclear Burning Virial Theorem Small Contraction Heating Increased nuclear burning Increased pressure Expansion

Self-Regulated Nuclear Burning Virial Theorem Small Contraction Heating Increased nuclear burning Increased pressure Expansion Main-Sequence Star Additional energy loss (“cooling”) Loss of pressure Contraction Heating Increased nuclear burning Hydrogen burning at a nearly fixed T Gravitational potential nearly fixed: GNM/R ~ constant R M (More massive stars bigger) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Degenerate Stars (“White Dwarfs”) Assume T very small No thermal pressure Electron degeneracy is

Degenerate Stars (“White Dwarfs”) Assume T very small No thermal pressure Electron degeneracy is pressure source Inverse mass-radius relationship for degenerate stars: R M-1/3 Pressure ~ Momentum density x Velocity • Electron density • Momentum p. F (Fermi momentum) • Velocity • Pressure • Density (Stellar mass M and radius R) (Ye electrons per nucleon) For sufficiently large mass, electrons become relativistic • Velocity = speed of light • Pressure Hydrostatic equilibrium No stable configuration With d. P/dr ~ -P/R we have approximately Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Chandrasekhar mass limit Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Degenerate Stars (“White Dwarfs”) Inverse mass-radius relationship for degenerate stars: R M-1/3 Chandrasekhar mass

Degenerate Stars (“White Dwarfs”) Inverse mass-radius relationship for degenerate stars: R M-1/3 Chandrasekhar mass limit Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Stellar Collapse Main-sequence Onion structure star Degenerate iron core: r 109 g cm-3 Hydrogen

Stellar Collapse Main-sequence Onion structure star Degenerate iron core: r 109 g cm-3 Hydrogen Burning T 1010 K MFe 1. 5 Msun RFe 8000 km Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Collapse (implosion) Helium-burning star Helium Burning Hydrogen Burning Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Evolution of Stars M < 0. 08 Msun Never ignites hydrogen cools (“hydrogen white

Evolution of Stars M < 0. 08 Msun Never ignites hydrogen cools (“hydrogen white dwarf”) Brown dwarf 0. 08 < M ≲ 0. 8 Msun Hydrogen burning not completed in Hubble time Low-mass main-squence star 0. 8 ≲ M ≲ 2 Msun Degenerate helium core after hydrogen exhaustion 2 ≲ M ≲ 5 -8 Msun Helium ignition non-degenerate 6 -8 Msun ≲ M < ? ? ? Georg Raffelt, Max-Planck-Institut für Physik, München, Germany All burning cycles Onion skin structure with degenerate iron core Core collapse supernova • Carbon-oxygen white dwarf • Planetary nebula • Neutron star (often pulsar) • Sometimes black hole? • Supernova remnant (SNR), e. g. crab nebula Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Evolution of a Low-Mass Star H H He C O H He MS Main-Sequence

Evolution of a Low-Mass Star H H He C O H He MS Main-Sequence Georg Raffelt, Max-Planck-Institut für Physik, München, Germany RGB HB Ged-Giant Branch AGB Horizontal Branch Asymptotic Giant Branch Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Planetary Nebulae Hour Glass Nebula Planetary Nebula IC 418 Eskimo Nebula Georg Raffelt, Max-Planck-Institut

Planetary Nebulae Hour Glass Nebula Planetary Nebula IC 418 Eskimo Nebula Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Planetary Nebula NGC 3132 Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Globular Clusters of the Milky Way http: //www. dartmouth. edu/~chaboyer/mwgc. html Globular clusters on

Globular Clusters of the Milky Way http: //www. dartmouth. edu/~chaboyer/mwgc. html Globular clusters on top of the FIRAS 2. 2 micron map of the Galaxy The galactic globular cluster M 3 Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Color-Magnitude Diagram for Globular Clusters • Stars with M so large that they have

Color-Magnitude Diagram for Globular Clusters • Stars with M so large that they have burnt out in a Hubble time • No new star formation in globular clusters Ma s Hot, blue cold, red Main-Sequence Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W. Harris, 2000) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Color-Magnitude Diagram for Globular Clusters H He H C O He Asymptotic Giant Red

Color-Magnitude Diagram for Globular Clusters H He H C O He Asymptotic Giant Red Giant H H He C O Horizontal Branch White Dwarfs Hot, blue cold, red Main-Sequence Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W. Harris, 2000) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Basics of Stellar Evolution Bounds on Neutrino Properties Georg Raffelt, Max-Planck-Institut für Physik, München,

Basics of Stellar Evolution Bounds on Neutrino Properties Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Basic Argument Flux of weakly interacting particles Star • Low-mass weakly-interacting particles can be

Basic Argument Flux of weakly interacting particles Star • Low-mass weakly-interacting particles can be emitted from stars • New energy-loss channel • Back-reaction on stellar properties and evolution • What are the emission processes? • What are the observable consequences? Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Bernstein et al. Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics,

Bernstein et al. Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Color-Magnitude Diagram for Globular Clusters H He H Particle emission delays He ignition, i.

Color-Magnitude Diagram for Globular Clusters H He H Particle emission delays He ignition, i. e. He core mass increased C O Asymptotic Giant Red Giant H H He Particle emission reduces helium burning lifetime, C i. e. number of HB O stars White Dwarfs Horizontal Branch Hot, blue cold, red Main-Sequence Color-magnitude diagram synthesized from several low-metallicity globular clusters and compared with theoretical isochrones (W. Harris, 2000) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrinos from Thermal Plasma Processes Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung Georg Raffelt,

Neutrinos from Thermal Plasma Processes Photo (Compton) Plasmon decay Pair annihilation Bremsstrahlung Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Plasmon Decay in Neutrinos Propagation in vacuum: • Photon massless • Can not decay

Plasmon Decay in Neutrinos Propagation in vacuum: • Photon massless • Can not decay into other particles, even if they themselves are massless Plasmon decay Propagation in a medium: • Photon acquires a “refractive index” • In a non-relativistic plasma (e. g. Sun, white dwarfs, core of red giant before helium ignition, …) behaves like a massive particle: Plasma frequency (electron density ne) • Degenerate helium core (r = 106 g/cm 3, T = 8. 6 ke. V) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Interaction in vacuum: • Massless neutrinos do not couple to photons • May have dipole moments or even “millicharges” Interaction in a medium: • Neutrinos interact coherently with the charged particles which themselves couple to photons • Induces an “effective charge” • In a degenerate plasma (electron Fermi energy EF and Fermi momentum p. F) • Degenerate helium core (and CV = 1) Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Plasmon Decay vs. Cherenkov Effect Photon dispersion in a medium can be Refractive index

Plasmon Decay vs. Cherenkov Effect Photon dispersion in a medium can be Refractive index n (k = n w) Example Allowed process in medium that is forbidden in vacuum Georg Raffelt, Max-Planck-Institut für Physik, München, Germany “Time-like” “Space-like” w 2 - k 2 > 0 w 2 - k 2 < 0 n<1 n>1 • Ionized plasma • Normal matter for large photon energies Water (n 1. 3), air, glass for visible frequencies Plasmon decay to neutrinos Cherenkov effect Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrino-Photon-Coupling in a Plasma Neutrino effective in-medium coupling For vector-current analogous to photon polarization

Neutrino-Photon-Coupling in a Plasma Neutrino effective in-medium coupling For vector-current analogous to photon polarization tensor Usually negligible Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutral-Current Couplings and Plasmon Decay Standard-model plasmon decay process Standard-model plasmon decay produces almost

Neutral-Current Couplings and Plasmon Decay Standard-model plasmon decay process Standard-model plasmon decay produces almost exclusively Neutrino A neutral-current process that was never useful for “neutrino counting” unlike big-bang nucleosynthesis (of course today Z 0 -decay width fixes Nn = 3) Fermion CV CA Electron Proton Neutron Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrino Electromagnetic Form Factors Effective coupling of electromagnetic field to a neutral fermion Charge

Neutrino Electromagnetic Form Factors Effective coupling of electromagnetic field to a neutral fermion Charge en = F 1(0) = 0 Anapole moment G 1(0) Magnetic dipole moment m = F 2(0) Electric dipole moment e = G 2(0) • Charge form factor F 1(q 2) and anapole G 1(q 2) are short-range interactions if charge F 1(0) = 0 • Connect states of equal helicity • In the standard model they represent radiative corrections to weak interaction • Dipole moments connect states of opposite helicity • Violation of individual flavor lepton numbers (neutrino mixing) Magnetic or electric dipole moments can connect different flavors or different mass eigenstates (“Transition moments”) • Usually measured in “Bohr magnetons” m. B = e/2 me Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Standard Dipole Moments for Massive Neutrinos In standard electroweak model, neutrino dipole and transition

Standard Dipole Moments for Massive Neutrinos In standard electroweak model, neutrino dipole and transition moments are induced at higher order Massive neutrinos ni (i = 1, 2, 3), mixed to form weak eigenstates Explicit evaluation for Dirac neutrinos (Magnetic moments mij electric moments eij) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Standard Dipole Moments for Massive Neutrinos Diagonal case (Magnetic moments of Dirac neutrinos) Off-diagonal

Standard Dipole Moments for Massive Neutrinos Diagonal case (Magnetic moments of Dirac neutrinos) Off-diagonal case (Transition moments) First term in f(mℓ/m. W) does not contribute (“GIM cancellation”) Largest neutrino mass eigenstate 0. 05 e. V < m < 0. 2 e. V For Dirac neutrino expect Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Consequences of Neutrino Dipole Moments Spin precession in external E or B fields Scattering

Consequences of Neutrino Dipole Moments Spin precession in external E or B fields Scattering T electron recoil energy Plasmon decay in stars Decay or Cherenkov effect Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Plasmon Decay and Stellar Energy Loss Rates Assume photon dispersion relation like a massive

Plasmon Decay and Stellar Energy Loss Rates Assume photon dispersion relation like a massive particle (nonrelativistic plasma) Millicharge Photon decay rate (transverse plasmon) with energy Eg Dipole moment Standard model Energy-loss rate of stellar plasma (temperature T and plasma frequency wpl) Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Globular Cluster Limits on Neutrino Dipole Moments Compare magnetic-dipole plasma emission with standard case

Globular Cluster Limits on Neutrino Dipole Moments Compare magnetic-dipole plasma emission with standard case For red-giant core before helium ignition wpl = 18 ke. V Require this to be < 1 Globular-cluster limit on neutrino dipole moment Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Neutrino Radiative Lifetime Limits Radiative decay Plasmon decay For low-mass neutrinos, plasmon decay in

Neutrino Radiative Lifetime Limits Radiative decay Plasmon decay For low-mass neutrinos, plasmon decay in globular cluster stars yields most restrictive limits Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China

Limits on Milli-Charged Particles Davidson, Hannestad & Raffelt JHEP 5 (2000) 3 Globular cluster

Limits on Milli-Charged Particles Davidson, Hannestad & Raffelt JHEP 5 (2000) 3 Globular cluster limit most restrictive for small masses Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17 -21 Sept 2008, Beijing, China