Quantum interference phenomenon in the cold atomic cascade

  • Slides: 60
Download presentation
 Quantum interference phenomenon in the cold atomic cascade system $$ : National Science

Quantum interference phenomenon in the cold atomic cascade system $$ : National Science Council and National Space Program Office, Taiwan Ray-Yuan Chang, Wei-Chia Fang, Ming-Da Tsai, and Chin-Chun Tsai National Cheng Kung University, Tainan, 70148 Taiwan

Classical analogy Young's interference

Classical analogy Young's interference

Quantum interference Fano interference Autler-Townes splitting

Quantum interference Fano interference Autler-Townes splitting

Transmission (arb. unit) Absorption (arb. unit) Quantum interference EIT

Transmission (arb. unit) Absorption (arb. unit) Quantum interference EIT

Energy level diagram Cesium F=4 Coupling laser Ti : Sapphire 794. 4 nm F=5

Energy level diagram Cesium F=4 Coupling laser Ti : Sapphire 794. 4 nm F=5 Probe laser 852 nm F=4 Calibration tool and marker for Rydberg state transition Transmission (arb. unit) 133 RTEIT Δc (MHz)

Cs MOT F’=5 4 3 2 MOT laser Repump laser F=4 3

Cs MOT F’=5 4 3 2 MOT laser Repump laser F=4 3

Experimental Setup M M Cs vapor cell Red filter Probe Anti-Helmholtz Coil for MOT

Experimental Setup M M Cs vapor cell Red filter Probe Anti-Helmholtz Coil for MOT Chopper ND filter BS Cold Cs Atom M BS PD Coupling Probe f PD 1 AOM Repump Laser MOT Laser Ti: Sapphire laser

Trap Loss F=5 Probe laser 852 nm F=4 f PD

Trap Loss F=5 Probe laser 852 nm F=4 f PD

Suppression F=5 Probe laser 852 nm F=4

Suppression F=5 Probe laser 852 nm F=4

Suppression F=4 Coupling laser Ti : Sapphire F=5 Probe laser F=4 Recovery

Suppression F=4 Coupling laser Ti : Sapphire F=5 Probe laser F=4 Recovery

Suppress Recover Loading Interaction MOT LASER F=4 Ti-Sa LASER Probe LASER Repump LASER AH

Suppress Recover Loading Interaction MOT LASER F=4 Ti-Sa LASER Probe LASER Repump LASER AH Coil Ti-Sa LASER Step suppress recover Coupling laser Ti : Sapphire F=5 Probe laser F=4

Chop Mode Loading Interaction MOT LASER Ti-Sa LASER Probe LASER Repump LASER AH Coil

Chop Mode Loading Interaction MOT LASER Ti-Sa LASER Probe LASER Repump LASER AH Coil Ti-Sa LASER Step suppress recover

Suppress Recover Coupling 30 m. W Probe off F=4 Coupling laser Ti : Sapphire

Suppress Recover Coupling 30 m. W Probe off F=4 Coupling laser Ti : Sapphire Probe on F=5 Probe laser RT EIT F=4

Power dependence Probe 5μW Coupling 10 m. W F=4 3 m. W 0. 8

Power dependence Probe 5μW Coupling 10 m. W F=4 3 m. W 0. 8 m. W Coupling laser Ti : Sapphire F=5 0. 4 m. W 0. 2 m. W 0. 15 m. W Probe laser F=4

Power dependence ~3. 5 MHz

Power dependence ~3. 5 MHz

Power dependence Laser linewidth 0. 5 MHz Laser linewidth 0 MHz

Power dependence Laser linewidth 0. 5 MHz Laser linewidth 0 MHz

Conclusion

Conclusion

Absorption EIT/CPT Enhanced

Absorption EIT/CPT Enhanced

EIT features Δp=0 Coupling 8. 3 m. W 150μW Δp varies Δp= -53 MHz

EIT features Δp=0 Coupling 8. 3 m. W 150μW Δp varies Δp= -53 MHz -23 MHz 15. 6 m. W +26 MHz 38. 9 m. W +70 MHz

Periodical Table Rb Xe Ba Fr I am Here!!!

Periodical Table Rb Xe Ba Fr I am Here!!!

Importance NIST-F 1 Frequency standard (9. 2 GHz) -16 ~ 6 × 10 ,

Importance NIST-F 1 Frequency standard (9. 2 GHz) -16 ~ 6 × 10 , June 2004).

Scattering Force Atom Photon Atom Spontaneous emission in a random direction Ultracold Lab.

Scattering Force Atom Photon Atom Spontaneous emission in a random direction Ultracold Lab.

Doppler Cooling Hansch and Schawlow Opt. Commun. 13, 68 (1975) Damp force Ultracold Lab.

Doppler Cooling Hansch and Schawlow Opt. Commun. 13, 68 (1975) Damp force Ultracold Lab.

Magneto-Optical Trap Steven Chu and D. E. Pritchard Phys. Rev. Lett. 59, 2631 (1987)

Magneto-Optical Trap Steven Chu and D. E. Pritchard Phys. Rev. Lett. 59, 2631 (1987) mj |e> J=1 -1 +1 0 0 +1 -1 0 |g> J=0 B<0 B=0 B>0 Ultracold Lab.

Ultracold Atomic Physics Lab. Ray-Yuan Chang Chin-Chun Tsai

Ultracold Atomic Physics Lab. Ray-Yuan Chang Chin-Chun Tsai

My PHD career 1. Wavemeter Δλ/λ~ 10 -7 < 50 MHz

My PHD career 1. Wavemeter Δλ/λ~ 10 -7 < 50 MHz

My PHD career 2. Na 2 OODR spectroscopy 3 p+3 p New observation 3

My PHD career 2. Na 2 OODR spectroscopy 3 p+3 p New observation 3 s+4 p Extend to the higher rovibrational levels 3 s+4 d Avoid crossing 3 s+4 f 3 s+5 d L-uncoupling and Λ doubling 3 s+4 d 3 s+5 p Extend to the higher rovibrational levels

My PHD career 3. Precision measurement of the Rydberg states Dye Laser : 560

My PHD career 3. Precision measurement of the Rydberg states Dye Laser : 560 nm~630 nm Dn ~ 10 MHz

Schematic of EIT Ωc >> Ωp Δc = 0 Δp~

Schematic of EIT Ωc >> Ωp Δc = 0 Δp~

Our system Phys. Rev. A 59 , 4675 (1999)

Our system Phys. Rev. A 59 , 4675 (1999)

Dressed state approach Claude Cohen-Tannoudji D D

Dressed state approach Claude Cohen-Tannoudji D D

Autler-Townes splitting CPT EIT

Autler-Townes splitting CPT EIT

Pathway Cancellation

Pathway Cancellation

Direct excitation Trap Loss ØLoading ØPower broadening EIT △c MHz

Direct excitation Trap Loss ØLoading ØPower broadening EIT △c MHz

Time sequence

Time sequence

Time sequence F=4 Loading Interaction MOT LASER Coupling laser Ti : Sapphire Repump LASER

Time sequence F=4 Loading Interaction MOT LASER Coupling laser Ti : Sapphire Repump LASER F=5 4 3 2 Ti-Sa LASER Step MOT laser Ti-Sa LASER Repump laser AH Coil F=4 3

Aulter-Townes splitting MOT fluorescence F’’=4 Coupling laser Ti : Sapphire 4 3 2 MOT

Aulter-Townes splitting MOT fluorescence F’’=4 Coupling laser Ti : Sapphire 4 3 2 MOT laser RT EIT Repump laser F’=5 F=4 3

EIT process in MOT F=4 133 Coupling laser Ti : Sapphire 4 3 2

EIT process in MOT F=4 133 Coupling laser Ti : Sapphire 4 3 2 MOT laser Repump laser F=5 Probe laser F=4 3 Cesium

Time sequence Loading Interaction MOT LASER Repump LASER AH Coil Ti-Sa LASER Probe LASER

Time sequence Loading Interaction MOT LASER Repump LASER AH Coil Ti-Sa LASER Probe LASER Ti-Sa LASER Step F=4 Coupling laser Ti : Sapphire 794. 5 nm F=5 Probe laser 852 nm F=4

EIT in MOT EIT F=4 Coupling laser Ti : Sapphire F=5 Probe laser MOT

EIT in MOT EIT F=4 Coupling laser Ti : Sapphire F=5 Probe laser MOT fluorescence F=4

Room temperature EIT Two extreme of probe intensity

Room temperature EIT Two extreme of probe intensity

) Hz (M Δc ( MH z) ) Hz (M Ωp Transmission (arb. unit)

) Hz (M Δc ( MH z) ) Hz (M Ωp Transmission (arb. unit) EIT&Raman absorption Transmission (arb. unit) Ωp Δc ( MH z)

Autler-Townes splitting CPT EIT

Autler-Townes splitting CPT EIT

Doubly dressed states

Doubly dressed states

Doubly dressed

Doubly dressed

Doubly dressed Splitting of EIT doublet

Doubly dressed Splitting of EIT doublet

Absorption EIT/CPT Enhanced

Absorption EIT/CPT Enhanced

Energy level diagram F=4 133 Coupling laser Ti : Sapphire 794. 4 nm F=5

Energy level diagram F=4 133 Coupling laser Ti : Sapphire 794. 4 nm F=5 Probe laser 852 nm F=4 Cesium

Decay fluorescence 8 s 7 s 6 p 6 s Fluorescence intensity 7 p

Decay fluorescence 8 s 7 s 6 p 6 s Fluorescence intensity 7 p

Excitation F’’=4 Coupling laser Ti : Sapphire 4 3 2 MOT laser Repump laser

Excitation F’’=4 Coupling laser Ti : Sapphire 4 3 2 MOT laser Repump laser F’=5 F=4 3

Equation of motion

Equation of motion

Schematic of EIT

Schematic of EIT

Coupled differential equation Steady state

Coupled differential equation Steady state

Our system Phys. Rev. A 59 , 4675 (1999)

Our system Phys. Rev. A 59 , 4675 (1999)

Scan coupling Background Free

Scan coupling Background Free

Decay fluorescence 7 p to 6 s 8 s 7 p 7 s 6

Decay fluorescence 7 p to 6 s 8 s 7 p 7 s 6 p 6 s

Experimental Setup M Cs vapor cell PD 1 Chopper Red filter M BS AOM

Experimental Setup M Cs vapor cell PD 1 Chopper Red filter M BS AOM AOM MOT Laser Ti: Sapphire laser

Simulation Calibration tool and marker for Rydberg state transition

Simulation Calibration tool and marker for Rydberg state transition