Acceleration of the Universe 0 100 pc 100

  • Slides: 69
Download presentation

Acceleration of the Universe

Acceleration of the Universe

宇宙の距離はしご 方法 適用距離 年周視差測定 0~ 100 pc 星団視差法 100 pc~ 10 kpc 散開星団主系列星 100

宇宙の距離はしご 方法 適用距離 年周視差測定 0~ 100 pc 星団視差法 100 pc~ 10 kpc 散開星団主系列星 100 pc ~ 50 kpc Cepheid型変光星 Tully-Fisher法 SN Ia 10 kpc~ 25 Mpc 10 Mpc~ 200 Mpc 60 Mpc~ 4000 Mpc

Trigonometric Parallax • Hipparcos Satellite 1989. 8. 8 -- 1993. 6 高精度視差観測衛星 – 角度精度

Trigonometric Parallax • Hipparcos Satellite 1989. 8. 8 -- 1993. 6 高精度視差観測衛星 – 角度精度 1/000'' – 118, 274個の恒星の視差を観測 • JASMINE = 1’’ 1 pc=3. 26 ly (Japan Astrometry Satellite Mission for INfrared Exploration) http: //www. jasmine-galaxy. org/indexj. html 高精度赤外線位置観測衛星 – 角度精度 10 s – 1億個の恒星(銀河面の半分)を観測 予定 q

Gaia • Outline – Observation locus L 2 point by Soyuz-FG Launch: 2012 Price:

Gaia • Outline – Observation locus L 2 point by Soyuz-FG Launch: 2012 Price: 650 m euro Duration: 5 yrs Distance limit: 10 kpc Ang. res: 7 ac for V=10, 12 -15 ac for V=15, 100 -300 ac for V=20 – Ang. vel. 0. 5 km/s for 40, 000 stars. – – – • Instruments – ASTRO: ang. Position of stars m=5. 7 -20 – photometer: 320 -1000 nm for stars m=5. 7 -20 – Spectrometer: high resolution spec. at 847 -874 nm for m<17.

HR Diagram of Our Galaxy HR diagram of globular clusters of our Galaxy HR

HR Diagram of Our Galaxy HR diagram of globular clusters of our Galaxy HR diagram of our Galaxy observed by Hipparucos

HR図での進化 Kippenhahn R, Weigert A : Stellar Structure and Evolution (1990)

HR図での進化 Kippenhahn R, Weigert A : Stellar Structure and Evolution (1990)

Mathewson, Ford and Visvanathan (1986) Ap. J 301: 664

Mathewson, Ford and Visvanathan (1986) Ap. J 301: 664

Hubble Key Project H 0= 71 ± 6 km/s Mpc From 25 galaxies Mould

Hubble Key Project H 0= 71 ± 6 km/s Mpc From 25 galaxies Mould et al. (2000) Ap. J 529: 7867

Hubble定数 by HST • Hubbleの法則 cz = H 0 d (v/c ¿ 1) Doppler

Hubble定数 by HST • Hubbleの法則 cz = H 0 d (v/c ¿ 1) Doppler 効果 z= / ' v/c 宇宙膨張 • H 0の観測値 H 0= 71 +/- 7 km/s/Mpc 1 Mpc= 106 pc 1 pc=3. 26 光年 = 3£ 1018 cm

Hubble Diagramの拡張 Flat ΛCDM models Curved CDM models Degeneracy

Hubble Diagramの拡張 Flat ΛCDM models Curved CDM models Degeneracy

SNIa で宇宙を計測する (High z) Supernova Search Team 1998 Riess AG et al 16 SNe

SNIa で宇宙を計測する (High z) Supernova Search Team 1998 Riess AG et al 16 SNe Ia (z=0. 16 -0. 62) + 34 nearbys 2004 Riess AG et al 16 SNe Ia (z>1. 25 by HST) + 170 SNe Supernova Cosmology Project 1997 Perlmutter S et al 7 SNe Ia (z=0. 35 -0. 46) 1998 Perlmutter S et al 42 SNe Ia (z=0. 18 -0. 83) 2003 Knop RA et al 11 SNe Ia (z=0. 36 -0. 86, HST) Supernova Legacy Survey 1 st yr 2005 Astier P 71 SNe Ia (0. 249<z<1. 01) + 44 nearbys Union Compilation 250 at high z + 57 at low z [Kowalski et al (2008)] Union Plus Compilation 492 SNe: Union + Cf. A 3 [Hicken M et al (2009)] SDSS SN Survey [Kessler et al (2009)] Union 2 Compilation 557 Sne [Amanullha R et al (2010)]

Supernova Legacy Survey SNLS collaboration: A&A 447: 31 ( 2006)

Supernova Legacy Survey SNLS collaboration: A&A 447: 31 ( 2006)

Union Plus Astrophys. J. 700: 1097 -1140, 2009. e-Print: ar. Xiv: 0901. 4804 [astro-ph.

Union Plus Astrophys. J. 700: 1097 -1140, 2009. e-Print: ar. Xiv: 0901. 4804 [astro-ph. CO]

Union 2 Compilation: 557 SNe ¢ w=+/- 1 R. Amanullah et al. , Astrophys.

Union 2 Compilation: 557 SNe ¢ w=+/- 1 R. Amanullah et al. , Astrophys. J. 716, 712 (2010), ar. Xiv: 1004. 1711 [astro-ph. CO].

CMB Temperature Map by WMAP

CMB Temperature Map by WMAP

宇宙のDark Pie 通常物質 暗黒 物質 ダークエネルギー WMAP Collaboration: Ap. J Suppl. 170: 377 (2007)

宇宙のDark Pie 通常物質 暗黒 物質 ダークエネルギー WMAP Collaboration: Ap. J Suppl. 170: 377 (2007) SDSS Collaboration: Ap. J 633: 560 (2005) WMAP 5 yr data: ar. Xiv: 0863. 0547

Reacceleration of the Universe 1998 Discovery by SNIa (SNCP, Hz. ST) 2003 WMAP 1

Reacceleration of the Universe 1998 Discovery by SNIa (SNCP, Hz. ST) 2003 WMAP 1 st year 2005 イ BAO (SDSS) 熱いビッグバン宇宙 ン フ WMAP 3 rd year 2006 レ 2007 Chandra X observation (fgas シ method) ョ ー 宇 宙 の 膨 張 速 度 ン WMAP 5 year data 2008 宇宙時間 暗 黒 時 代 現 在 の 宇 宙 の 加 速 膨 張

BIG-BANG MODELの諸問題

BIG-BANG MODELの諸問題

INFLATION UNIVERSE MODEL

INFLATION UNIVERSE MODEL

CMP Polarisation • Stokes Parameters for the Linear Polarisation • Polarisation Tensor Pure E-mode

CMP Polarisation • Stokes Parameters for the Linear Polarisation • Polarisation Tensor Pure E-mode b E cosb+ B sinb Pure E-mode Pure B-mode Lue, Wang, Kamionkowski 1999

Polarised Radiation Transfer • Flux intensity tensor I¹º where e¹kp (p=1, 2) is the

Polarised Radiation Transfer • Flux intensity tensor I¹º where e¹kp (p=1, 2) is the polarisation basis: e¹¢ k¹=0. • The Stokes parameters are expressed as Linear Polarisation Circular Polarisation

Boltzmann Equation • When the WKB approximation is valid for radiation fields, I¹º satisfies

Boltzmann Equation • When the WKB approximation is valid for radiation fields, I¹º satisfies the Boltzmann equation: GW + mode ) d T, E-mode GW £ mode ) B-mode

INFLATION 問題

INFLATION 問題

様々なモデル • Old inflation model [Sato K 1981; Guth A 1981] • New inflation

様々なモデル • Old inflation model [Sato K 1981; Guth A 1981] • New inflation model [Linde A 1982; Albrecht A, Steinhardt P 1982] • Chaotic inflation model [Linde A 1983] このモデルでは – 現在のホライズン領域が 1/H となる時期: f. H » 15 [Linde A 1990 B] – ゆらぎの大きさ: H » mf 2/(5¼ 61/2) – COBE規格化: H » 2£ 10 -5 ) m» 3£ 10 -6(=7£ 1012 Ge. V). • Power law inflation model [Abbott LF, Wise MB 1984; Lucchin F, Matarrese S 1985] • Hybrid inflation model [Linde A 1994] – • このモデルでは,f ¸ f. C =M/g のとき s ¼ 0 となり,mが小さいとき f 方向にポテンシャルは平坦となる. m 2 f. C 2= m 2 M 2 /g 2 ¿ M 4 / のとき,臨界点でのHubbleは H 2=M 4/(12 ) となる.したがって,M 2> 2 m 2 /g 2 か つ m 2 ¿ H 2 ならば f >f. C でインフレーションが起きる. DBI inflation model [Alishahiha M, Silverstein E, Tong D 2004]

再加熱問題 • バリオン非対称性:n. B/ng =(6. 10+/- 0. 21)£ 10 -10 (WMAP 3 yr) Cf.

再加熱問題 • バリオン非対称性:n. B/ng =(6. 10+/- 0. 21)£ 10 -10 (WMAP 3 yr) Cf. Thermal leptogenesis ) Tr>O(109)Ge. V [Buchmuller W, Di Bari P, Plumacher M 2005] • Gravitino問題 [Kawasaki M, Takahashi F, Yanagida 2006; Kawasaki M, Moroi T 1995] – m 3/2=100 Ge. V – 10 Te. V (unstable): Thermal production ) Tr<106 -8 Ge. V (BBN constraint) – 10 ke. V< m 3/2<O(10)Ge. V (stable, LSP): Tr<107 Ge. V(m 3/2/1 Ge. V) ( M constraint)

Small Field vs Large Field • Small field model – | | < mpl

Small Field vs Large Field • Small field model – | | < mpl – 例: • New influm, Hybrid influm, • Racetrack model • D 3 -D 7 brane influm – 問題点 • ポテンシャルを超平坦に微調整 • 量子補正に敏感 • 初期条件の微調整が必要. new influm

Eta Problem • Single inflaton slow roll model – Slow roll parameters • ,

Eta Problem • Single inflaton slow roll model – Slow roll parameters • , ¿ 1 required! Potential in 4 D N=1 SUGRA – Kahler potential: – Superpotential: W(z) (holomorphic) – Kahler F-term correction to the inflaton mass – -problem The eta problem may be solved if theory has a shift symmetry Kawasaki M, Yamaguchi M, Yanagida T 2000