Asteroseismology of solartype stars Revolutionizing the study of

  • Slides: 79
Download presentation
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University

Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University

Asteroseismology: Solar-like stars Co. Ro. T HD 49385 1. 2. 3. 4. Measuring oscillation

Asteroseismology: Solar-like stars Co. Ro. T HD 49385 1. 2. 3. 4. Measuring oscillation frequencies Identify modes (p, g, mixed, l, n, m) Compute model frequencies Compare observed frequencies with the model The Sun Christensen-Dalsgaard et al. 1995

Observations: Challenges • Accuracy of oscillation frequencies • Mode identification, avoided crossings, (curvature in

Observations: Challenges • Accuracy of oscillation frequencies • Mode identification, avoided crossings, (curvature in the Echelle diagram) • Rotational splitting, mode lifetime, mode amplitudes, granulation

Helioseismology asteroseismology

Helioseismology asteroseismology

State-of-the-art Ground-based asteroseismology of solar-type stars UCLES at the AAT UVES at the VLT

State-of-the-art Ground-based asteroseismology of solar-type stars UCLES at the AAT UVES at the VLT HARPS at ESO 3. 6 m

Ground-based In most cases: • Low SNR • Short obs. period

Ground-based In most cases: • Low SNR • Short obs. period

(Fabien Carrier)

(Fabien Carrier)

(Fabien Carrier)

(Fabien Carrier)

High signal-to-noise observations of solar-like oscillations

High signal-to-noise observations of solar-like oscillations

Mixed mode

Mixed mode

Martic et al. 2004: amp = 40 cm/s per mode = 6 -7 ppm

Martic et al. 2004: amp = 40 cm/s per mode = 6 -7 ppm per mode

Brown et al. 1991 Martic et al. 2004: amp = 40 cm/s per mode

Brown et al. 1991 Martic et al. 2004: amp = 40 cm/s per mode = 6 -7 ppm per mode

2 0 3 4 3 1 ? ? ? 2 0

2 0 3 4 3 1 ? ? ? 2 0

Velocities of a Cen A with UVES/VLT Precision: 50 -70 cm/s. Cadence 26 seconds!

Velocities of a Cen A with UVES/VLT Precision: 50 -70 cm/s. Cadence 26 seconds!

35 UVES/VLT 2 + UCLES/AAT Butler, Bedding, Kjeldsen et al. 2003, 2004

35 UVES/VLT 2 + UCLES/AAT Butler, Bedding, Kjeldsen et al. 2003, 2004

2 0 3 1

2 0 3 1

Radial p-mode (radial orders)

Radial p-mode (radial orders)

α Centauri system OPAL EOS, OPAL 96 opacity, He, Z settling (Teixeira et al.

α Centauri system OPAL EOS, OPAL 96 opacity, He, Z settling (Teixeira et al. )

α Centauri A

α Centauri A

α Centauri A

α Centauri A

α Centauri B

α Centauri B

α Centauri B

α Centauri B

Models: Challenges • • Input physics Properties: rotation, mixing Surface frequency offset Avoided crossings

Models: Challenges • • Input physics Properties: rotation, mixing Surface frequency offset Avoided crossings – sensitivity to finer details in the models

The Surface Offset O-C

The Surface Offset O-C

Bi. SON Model S

Bi. SON Model S

The Surface Offset 1. Frequency (f) 2. Large separation MODEL S 3038. 95 135.

The Surface Offset 1. Frequency (f) 2. Large separation MODEL S 3038. 95 135. 855 GOLF 3034. 15 134. 810 radial order, n (21) 0. 16 17 -25 % (21) 0. 78 17 -25 % 3. f(n=17) 4. f(n=13) 2497. 35 1957. 46 2496. 04 1957. 45 0. 05 17 % 13 % 0. 0005

Observations: Challenges • Accuracy of oscillation frequencies • Mode identification, avoided crossings, (curvature in

Observations: Challenges • Accuracy of oscillation frequencies • Mode identification, avoided crossings, (curvature in the Echelle diagram) • Rotational splitting, mode lifetime, mode amplitudes, granulation

How do we improve this?

How do we improve this?

How do we improve this? • Higher frequency resolution

How do we improve this? • Higher frequency resolution

How do we improve this? • Higher frequency resolution Space missions

How do we improve this? • Higher frequency resolution Space missions

How do we improve this? • Higher frequency resolution • Lower noise

How do we improve this? • Higher frequency resolution • Lower noise

ted ina m o d n tio ula Gran ted lat l i c

ted ina m o d n tio ula Gran ted lat l i c s O ion na i m o sd

How do we improve this? • Higher frequency resolution • Lower noise r e

How do we improve this? • Higher frequency resolution • Lower noise r e t s o e. P h t e Se ! G N O on S

Co. Ro. T (CNES) 2006 Seismology for a large number of stars

Co. Ro. T (CNES) 2006 Seismology for a large number of stars

Co. Ro. T (CNES) 2006 HD 49385 HD 49933 HD 181420

Co. Ro. T (CNES) 2006 HD 49385 HD 49933 HD 181420

Co. Ro. T (CNES) 2006 HD 49385 HD 49933 HD 181420

Co. Ro. T (CNES) 2006 HD 49385 HD 49933 HD 181420

Same problem as in Procyon…. l=0, 2 and 1, 3 ridges? The F-star problem

Same problem as in Procyon…. l=0, 2 and 1, 3 ridges? The F-star problem

HD 181420 Same problem as in Procyon and HD 49933 …. l=0, 2 and

HD 181420 Same problem as in Procyon and HD 49933 …. l=0, 2 and 1, 3 ridges?

Simple asteroseismology…

Simple asteroseismology…

Simple asteroseismology…

Simple asteroseismology…

Asteroseismology as a tool • Stellar properties based on the large separation • 8

Asteroseismology as a tool • Stellar properties based on the large separation • 8 -10% error in mass, 1% error for the large separation will give a 3% error for the stellar radius

Asteroseismology as a tool • Knowledge of the effective temperature (e. g. typical error

Asteroseismology as a tool • Knowledge of the effective temperature (e. g. typical error of 2%) will then give the absolute luminosity (error 10%) • This will improve the mass and radius estimate further

NASA Kepler launched in March 2009

NASA Kepler launched in March 2009

HAT-P-7

HAT-P-7

Q 0 Q 1 Days after launch

Q 0 Q 1 Days after launch

Models: Challenges • • Input physics Properties: rotation, mixing Surface frequency offset Avoided crossings

Models: Challenges • • Input physics Properties: rotation, mixing Surface frequency offset Avoided crossings – sensitivity to finer details in the models

Kepler Asteroseismic Activities • • • Asteroseismology on exoplanet candidates Target selection for KASC

Kepler Asteroseismic Activities • • • Asteroseismology on exoplanet candidates Target selection for KASC Data distribution via KASOC Organizing data analysis Workshops; KASC III Publishing papers

Chaplin et al… 2010 Based on the first half of the KASC Survey… hundreds

Chaplin et al… 2010 Based on the first half of the KASC Survey… hundreds of stars showing solar-like oscillations

The challenge… • Accuracy of oscillation frequencies (Kepler will observe some stars for 3,

The challenge… • Accuracy of oscillation frequencies (Kepler will observe some stars for 3, 5 years) • Mode identification (“F-star problem”) • Rotational splitting, mode lifetime, mode amplitudes, granulation, activity • Input physics (EOS, opacities, convection, rotation, mixing) and the surface frequency offset • Avoided crossings (sensitivity to finer details in the models) • g-modes

The challenge… • Co. Ro. T, Kepler, PLATO, SONG… will provide the data and

The challenge… • Co. Ro. T, Kepler, PLATO, SONG… will provide the data and challenge theories of stellar evolution • Improved stellar modelling will provide the deeper understanding • Remember to enjoy those amazing data