Compresin Hctor Soto Rodrguez Centro Regional de Desarrollo

  • Slides: 130
Download presentation
Compresión Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Morelia, Mich. México

Compresión Héctor Soto Rodríguez Centro Regional de Desarrollo en Ingeniería Civil Morelia, Mich. México Agosto de 2005 Revisión, elaboración del guión y locución a cargo del Dpto. de Ingeniería Civil de la Universidad de Chile con coordinación del Ing. Ricardo Herrera

Miembros en compresión 1. 2. 3. 4. 5. 6. 7. Introducción Tipos de columnas

Miembros en compresión 1. 2. 3. 4. 5. 6. 7. Introducción Tipos de columnas Usos de miembros en compresión Estados de equilibrio Definición de pandeo local Elementos planos y no atiesados Clasificación de las secciones de acero CONTENIDO

Miembros en compresión CONTENIDO 8. Carga crítica de Euler. 9. Longitud efectiva 10. Relaciones

Miembros en compresión CONTENIDO 8. Carga crítica de Euler. 9. Longitud efectiva 10. Relaciones de esbeltez 11. Esfuerzos residuales 12. Modos de pandeo de miembros en compresión 13. Resistencia de columnas de acero

MIEMBRO EN COMPRESION 1. Introducción • Miembro en compresión es una pieza recta en

MIEMBRO EN COMPRESION 1. Introducción • Miembro en compresión es una pieza recta en la que actúa una fuerza axial que produce compresión pura. Columna aislada

1. Introducción • El miembro puede ser a base de: a) perfiles laminados, b)

1. Introducción • El miembro puede ser a base de: a) perfiles laminados, b) secciones soldadas o c) miembros armados. • Su sección puede ser a) variable o b) constante • y de a) celosía o b) alma llena. MIEMBRO EN COMPRESION

MIEMBRO EN COMPRESION 1. Introducción a) Columna formada por dos ángulos d) Cuatro ángulos

MIEMBRO EN COMPRESION 1. Introducción a) Columna formada por dos ángulos d) Cuatro ángulos en caja b) Dos ángulos separados unidos con placa e) Perfil W con placas de refuerzo en alas c) Cuatro ángulos, sección abierta f) Dos perfiles W en caja Secciones típicas de miembros en compresión

MIEMBRO EN COMPRESION 1. Introducción g) Dos canales en espalda con elementos de unión

MIEMBRO EN COMPRESION 1. Introducción g) Dos canales en espalda con elementos de unión en alas h) Perfil W con placas laterales Secciones típicas de miembros en compresión

MIEMBRO EN COMPRESION 1. Introducción i) Angulo simple k) Canal j) Te l) Columna

MIEMBRO EN COMPRESION 1. Introducción i) Angulo simple k) Canal j) Te l) Columna W Secciones típicas de miembros en compresión

MIEMBRO EN COMPRESION 1. Introducción m) Tubo o tubular circular p) Sección en caja

MIEMBRO EN COMPRESION 1. Introducción m) Tubo o tubular circular p) Sección en caja con dos canales frente a frente n) Tubular cuadrado q) Sección en caja. Dos canales en espalda con elementos de celosía o) Tubular rectangular r) Sección en caja. Dos canales en espalda con Placa de unión. Secciones típicas de miembros en compresión

MIEMBRO EN COMPRESION 1. Introducción s) Sección armada Tres placas soldadas v) Sección armada

MIEMBRO EN COMPRESION 1. Introducción s) Sección armada Tres placas soldadas v) Sección armada Placa vertical cuatro ángulos y cubreplacas t) Sección armada Cuatro placas soldadas w) Sección armada Placa vertical y cuatro ángulos u) Sección en caja Cuatro ángulos con placas verticales y horizontales x) W con canales Secciones típicas de miembros en compresión

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Ventajas y

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Ventajas y usos convenientes Tubos circulares Propiedades geométricas convenientes alrededor de los ejes principales, poco peso. Estructuras estéticas a simple vista. Se usan profusamente en estructuras especiales: plataformas marinas para explotación petrolera y en estructuras espaciales o tridimensionales para cubrir grandes claros. Debido a su gran disponibilidad en el mercado, se consiguen fácilmente, haciendo referencia al diámetro exterior y grueso de pared. Desventajas Conexiones difíciles de hacer en taller. Se recomienda trazar plantillas de cartón para facilitar la conexión o utilizar nudos especiales de unión que tienen preparaciones para recibir los miembros del resto de la estructura. © Diseño de Miembros Estructurales de Acero. Héctor Soto Rodríguez. Michael D. Engelhardt

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Tubo cuadrado

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Tubo cuadrado y rectangular Ventajas y usos convenientes Desventajas Perfiles eficientes, tienen características geométricas favorables alrededor de los dos ejes centroidales y principales. Tienen los mismos usos que los tubos circulares. Si la conexión es soldada, se recomienda el uso de electrodos adecuados para lograr soldaduras de calidad aceptable. © Diseño de Miembros Estructurales de Acero. Héctor Soto Rodríguez. Michael D. Engelhardt

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Sección H

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Sección H Ventajas y usos convenientes Desventajas Perfil conveniente en columnas de marcos rígidos de edificios convencionales. Propiedades favorables y similares alrededor de los dos ejes principales. (El ancho de los patines es un poco menor que el peralte total de la sección). Por la forma de la sección abierta, facilita las conexiones. Disponibilidad comercial, sujeta a producción. Se puede fabricar en taller de acuerdo con las necesidades de diseño. © Diseño de Miembros Estructurales de Acero. Héctor Soto Rodríguez. Michael D. Engelhardt

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Sección T

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Sección T Ventajas y usos convenientes Desventajas Conveniente en cuerdas de armaduras. Facilita la unión de diagonales y montantes, soldándolos al alma Disponibilidad comercial sujeta a la producción de perfiles tipo W © Diseño de Miembros Estructurales de Acero. Héctor Soto Rodríguez. Michael D. Engelhardt

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Ángulos de

Perfiles típicos que se emplean para trabajar en compresión 1. Introducción Perfil Ángulos de lados iguales o desiguales Ventajas y usos convenientes Convenientes en cuerdas, diagonales y montantes de armaduras de techo, puntales de contraventeo, paredes de edificios industriales. Se emplean sencillos o en pares (en cajón, en espalda, o en estrella). Es uno de los perfiles más económicos en el mercado. Desventajas Falta de control de calidad en perfiles comerciales, producidos por mini acerías: Alto contenido de carbono, material resistente pero de baja ductilidad © Diseño de Miembros Estructurales de Acero. Héctor Soto Rodríguez. Michael D. Engelhardt

COLUMNA AISLADA 1. Introducción P Longitud de la columna. Articulación (M=0) Sección extrema apoyo

COLUMNA AISLADA 1. Introducción P Longitud de la columna. Articulación (M=0) Sección extrema apoyo articulado Línea de aplicación de la carga ( eje del miembro) Columna perfectamente recta Rigidez a la flexión EI Forma de la columna pandeada. Sección extrema apoyo articulado. P M=0 Miembro en compresión Nomenclatura Columna aislada

1. Introducción COLUMNA AISLADA • Para que un miembro trabaje en compresión pura, se

1. Introducción COLUMNA AISLADA • Para que un miembro trabaje en compresión pura, se requiere que: – El miembro sea perfectamente recto – Las fuerzas que obran en la columna estén aplicadas en los centros de gravedad de las secciones extremas – La línea de acción de la carga de compresión axial coincida con el eje del miembro.

1. Introducción COLUMNA AISLADA EXCENTRICIDAD Las excentricidades en la aplicación de las cargas y

1. Introducción COLUMNA AISLADA EXCENTRICIDAD Las excentricidades en la aplicación de las cargas y los inevitables defectos geométricos, no se incluyen de manera explicita en el diseño, pero sí se toman en cuenta en las ecuaciones de diseño.

1. Introducción COLUMNA AISLADA EXCENTRICIDAD Una columna con una curvatura inicial debe soportar un

1. Introducción COLUMNA AISLADA EXCENTRICIDAD Una columna con una curvatura inicial debe soportar un momento flexionante adicional.

COLUMNA AISLADA EXCENTRICIDAD 1. Introducción P L Longitud de la columna. Pe Excentricidad Sección

COLUMNA AISLADA EXCENTRICIDAD 1. Introducción P L Longitud de la columna. Pe Excentricidad Sección extrema Apoyo articulado Eje del miembro Rigidez a la flexión EI D Forma de la columna pandeada. Sección extrema apoyo articulado M = P·e Una columna en compresión con carga excéntrica debe soportar un momento flexionante adicional.

TEORIAS TRADICIONALES DE PANDEO 1. Introducción Teorías tradicionales de pandeo: Pandeo ocurre en un

TEORIAS TRADICIONALES DE PANDEO 1. Introducción Teorías tradicionales de pandeo: Pandeo ocurre en un plano de simetría de la sección, sin rotación de la misma (pandeo por flexión). P P y L x x y P

1. Introducción EFICIENCIA DE LOS PERFILES EN COMPRESIÓN Secciones que tienen el máximo radio

1. Introducción EFICIENCIA DE LOS PERFILES EN COMPRESIÓN Secciones que tienen el máximo radio de giro con la menor área son más eficientes para resistir pandeo.

2. Tipos de columna COLUMNAS CLASIFICACION De acuerdo con la esbeltez de la columna,

2. Tipos de columna COLUMNAS CLASIFICACION De acuerdo con la esbeltez de la columna, se distinguen tres tipos: • Columnas cortas • Columnas intermedias • Columnas largas

2. Tipos de columna COLUMNAS CORTAS a) Son miembros que tienen relaciones de esbeltez

2. Tipos de columna COLUMNAS CORTAS a) Son miembros que tienen relaciones de esbeltez muy bajas. b) Resisten la fuerza que ocasiona su plastificación completa. c) Capacidad de carga no es afectada por ninguna forma de inestabilidad d) Resistencia máxima depende solamente del área total de su sección transversal y del esfuerzo de fluencia del acero. e) Falla es por aplastamiento.

2. Tipos de columna COLUMNAS INTERMEDIAS • Miembros con relaciones de esbeltez en un

2. Tipos de columna COLUMNAS INTERMEDIAS • Miembros con relaciones de esbeltez en un rango intermedio. • Rigidez es suficiente para posponer la iniciación del fenómeno de inestabilidad hasta que parte del material está plastificado. • Resistencia máxima depende de – – Rigidez del miembro, Esfuerzo de fluencia, Forma y dimensiones de sus secciones transversales y Distribución de los esfuerzos residuales • Falla es por inestabilidad inelástica

2. Tipos de columna COLUMNAS LARGAS a) Miembros con relaciones de esbeltez altas. b)

2. Tipos de columna COLUMNAS LARGAS a) Miembros con relaciones de esbeltez altas. b) Inestabilidad se inicia en el intervalo elástico, los esfuerzos totales no llegan todavía al límite de proporcionalidad, en el instante en que empieza el pandeo. c) Su resistencia máxima depende de la rigidez en flexión y en torsión. d) No depende del esfuerzo de fluencia Fy.

2. Tipos de columna Diagrama de esfuerzos en compresión, en función de la relación

2. Tipos de columna Diagrama de esfuerzos en compresión, en función de la relación de esbeltez COMPORTAMIENTO

3. Uso de miembros en compresión ESTRUCTURAS INDUSTRIALES (2) 1. Marco rígido 2. Arriostramiento

3. Uso de miembros en compresión ESTRUCTURAS INDUSTRIALES (2) 1. Marco rígido 2. Arriostramiento horizontal en cubierta 3. Arriostramiento vertical 4. Columnas de fachada (4) (5) (1) (4) (1) 5. Arriostramiento de columnas de fachada (3) Galpones industriales

3. Uso de miembros en compresión 1 2 3 4 5 6 7 8

3. Uso de miembros en compresión 1 2 3 4 5 6 7 8 9 ESTRUCTURAS INDUSTRIALES 10 Arriostramientos horizontales en el plano de la cubierta (armadura horizontal) 15000 A B 9 x 6000 = 54000 Planta de cubierta

3. Uso de miembros en compresión H 1 Carga gravitacional w 1 + w

3. Uso de miembros en compresión H 1 Carga gravitacional w 1 + w 2 H 2 + - +: Compresión - : Tensión. w 3 H 3 + - (a) Marco arriostrado EDIFICIOS (b) Columna articulada en ambos extremos

3. Uso de miembros en compresión Viga Columna de un marco o pórtico EDIFICIOS

3. Uso de miembros en compresión Viga Columna de un marco o pórtico EDIFICIOS

3. Uso de miembros en compresión ARMADURAS = compresión = tensión = sin carga

3. Uso de miembros en compresión ARMADURAS = compresión = tensión = sin carga Enrejado típico

3. Uso de miembros en compresión. EXCAVACIONES PROFUNDAS Empuje de tierra o de agua

3. Uso de miembros en compresión. EXCAVACIONES PROFUNDAS Empuje de tierra o de agua Puntal Entibación

3. Uso de miembros en compresión. ESTRUCTURAS ESPECIALES = compresión = tensión Torre de

3. Uso de miembros en compresión. ESTRUCTURAS ESPECIALES = compresión = tensión Torre de transmisión

3. Uso de miembros en compresión Sección de un arco ARCOS

3. Uso de miembros en compresión Sección de un arco ARCOS

4. Estados de equilibrio TIPOS DE EQUILIBRIO P F P Se considera una columna

4. Estados de equilibrio TIPOS DE EQUILIBRIO P F P Se considera una columna esbelta de eje recto sometida a una carga de compresión axial P y una carga lateral F.

4. Estados de equilibrio P < Pcr F P EQUILIBRIO ESTABLE F=0 P Si

4. Estados de equilibrio P < Pcr F P EQUILIBRIO ESTABLE F=0 P Si P < PCR, al remover la fuerza horizontal la columna vuelve a su configuración recta. En este caso se dice que la columna está en “equilibrio estable”.

4. Estados de equilibrio P = Pcr F=0 F P EQUILIBRIO INDIFERENTE b) P

4. Estados de equilibrio P = Pcr F=0 F P EQUILIBRIO INDIFERENTE b) P P Si P = PCR, al remover la fuerza horizontal la columna puede o no volver a su configuración recta. En este caso se dice que la columna está en “equilibrio indiferente”.

4. Estados de equilibrio P > Pcr P EQUILIBRIO INDIFERENTE P > Pcr P

4. Estados de equilibrio P > Pcr P EQUILIBRIO INDIFERENTE P > Pcr P Si P > PCR, al remover la fuerza horizontal la columna no vuelve a su configuración recta. En este caso se dice que la columna está en “equilibrio inestable”.

5. Definición de pandeo local bf PANDEO LOCAL DE PATINES Y tf bf tf

5. Definición de pandeo local bf PANDEO LOCAL DE PATINES Y tf bf tf X X tw hw tf Y El momento es restringido por la rigidez a la flexión (EI) del patín Tendencia al pandeo paralelo al eje Y-Y P bf b t tw tf hw r t P

5. Definición de pandeo local P P PCR A MODOS DE PANDEO CR CR

5. Definición de pandeo local P P PCR A MODOS DE PANDEO CR CR A A-A Pandeo global A A A-A Pandeo local de patines A-A Pandeo local del alma

5. Definición de pandeo local RESISTENCIA AL PANDEO LOCAL • En general, el esfuerzo

5. Definición de pandeo local RESISTENCIA AL PANDEO LOCAL • En general, el esfuerzo crítico, Fcr de pandeo local se puede expresar como: Fcr = f (b/t, Fy) donde b/t = relación ancho/espesor de los elementos planos que forman la sección transversal del miembro (adimensional) Fy = esfuerzo de fluencia del material

5. Definición de pandeo local PANDEO LOCAL RESISTENCIA F CR, Pandeo Relación b/t baja

5. Definición de pandeo local PANDEO LOCAL RESISTENCIA F CR, Pandeo Relación b/t baja Relación b/t alta local F y Mayoría de los perfiles laminados W lr b/t

5. Definición de pandeo local RESISTENCIA AL PANDEO LOCAL El pandeo local puede gobernar

5. Definición de pandeo local RESISTENCIA AL PANDEO LOCAL El pandeo local puede gobernar para: • Esfuerzos de fluencia elevados (Fy > 450 Mpa) • Secciones soldadas • Otros perfiles diferentes de las secciones estructurales laminadas W (ángulos, perfiles Tes, secciones de pared delgadas, etc. )

6. Elementos planos atiesados y no atiesados ELEMENTOS NO ATIESADOS DEFINICIÓN Elementos planos no

6. Elementos planos atiesados y no atiesados ELEMENTOS NO ATIESADOS DEFINICIÓN Elementos planos no atiesados

6. Elementos planos atiesados y no atiesados • Placas: ELEMENTOS NO ATIESADOS ANCHO

6. Elementos planos atiesados y no atiesados • Placas: ELEMENTOS NO ATIESADOS ANCHO

6. Elementos planos atiesados y no atiesados ELEMENTOS NO ATIESADOS ANCHO • En alas

6. Elementos planos atiesados y no atiesados ELEMENTOS NO ATIESADOS ANCHO • En alas de ángulos, patines de canales y zetas: Canal

6. Elementos planos atiesados y no atiesados • En almas de tés: • En

6. Elementos planos atiesados y no atiesados • En almas de tés: • En patines de secciones I, H y T: ELEMENTOS NO ATIESADOS ANCHO

6. Elementos planos atiesados y no atiesados ELEMENTOS NO ATIESADOS ANCHO • En perfiles

6. Elementos planos atiesados y no atiesados ELEMENTOS NO ATIESADOS ANCHO • En perfiles hechos con lámina doblada:

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS DEFINICIÓN Elementos planos atiesados

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS DEFINICIÓN Elementos planos atiesados

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS ANCHO • En almas de

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS ANCHO • En almas de secciones laminadas o almas de secciones formadas por placas:

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS ANCHO • En patines de

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS ANCHO • En patines de secciones laminadas en cajón:

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS ANCHO • En patines y

6. Elementos planos atiesados y no atiesados ELEMENTOS ATIESADOS ANCHO • En patines y almas de secciones laminadas en cajón:

6. Elementos planos atiesados y no atiesados • En elementos de espesor uniforme: •

6. Elementos planos atiesados y no atiesados • En elementos de espesor uniforme: • En patines de espesor variable: ESPESOR

6. Elementos planos atiesados y no atiesados SECCIONES CIRCULARES HUECAS RELACION D/t • En

6. Elementos planos atiesados y no atiesados SECCIONES CIRCULARES HUECAS RELACION D/t • En secciones circulares huecas: b/t = D/t

6. Elementos planos atiesados y no atiesados EJEMPLOS RESUMEN bf bf k tw d

6. Elementos planos atiesados y no atiesados EJEMPLOS RESUMEN bf bf k tw d h tw d tf tw h h tf tf b bf bf b b b d tf h d d tw tf t = tw= tf b= bf = 3 t f tw

6. Elementos planos atiesados y no atiesados d t b tf EJEMPLOS RESUMEN D

6. Elementos planos atiesados y no atiesados d t b tf EJEMPLOS RESUMEN D t

7. Clasificación de las secciones de acero • Secciones esbeltas • Secciones no esbeltas

7. Clasificación de las secciones de acero • Secciones esbeltas • Secciones no esbeltas • Tabla B 4. 1 de la especificación (AISC 2005) entrega límites para considerar diferentes secciones esbeltas o no esbeltas

8. Carga crítica de Euler INTRODUCCION • Leonhard Euler (1707 -1783) – Determinación de

8. Carga crítica de Euler INTRODUCCION • Leonhard Euler (1707 -1783) – Determinación de carga crítica para columnas – Primeros estudios teóricos sobre comportamiento de columnas largas. • Engesser, Consideré y Von Karman (fines del siglo XIX y principios del XX), Shanley (1947) – Pandeo columnas intermedias.

8. Carga crítica de Euler 3 MODELO BASICO P 1 Rigidez a la flexión

8. Carga crítica de Euler 3 MODELO BASICO P 1 Rigidez a la flexión EI D L 2 Forma de la columna pandeada 1 Columna aislada bi-articulada

8. Carga crítica de Euler HIPOTESIS FUNDAMENTALES 1. Igual módulo de elasticidad en tensión

8. Carga crítica de Euler HIPOTESIS FUNDAMENTALES 1. Igual módulo de elasticidad en tensión y compresión 2. Material isótropo, homogéneo, elástico y lineal 3. Miembro recto inicialmente y carga concéntrica con el eje. 4. Apoyos son articulaciones perfectas, sin fricción; acortamiento permitido.

8. Carga crítica de Euler HIPOTESIS FUNDAMENTALES 5. No existe torcimiento, o alabeo, ni

8. Carga crítica de Euler HIPOTESIS FUNDAMENTALES 5. No existe torcimiento, o alabeo, ni pandeo local. 6. No hay esfuerzos residuales. 7. Deformaciones pequeñas; expresión aproximada para definir la curvatura del eje deformado de la columna es adecuada.

8. Carga crítica de Euler HIPOTESIS FUNDAMENTALES E Gráfica esfuerzo-deformación de la columna en

8. Carga crítica de Euler HIPOTESIS FUNDAMENTALES E Gráfica esfuerzo-deformación de la columna en estudio

8. Carga crítica de Euler RESULTADOS • Carga crítica de pandeo elástico de Euler,

8. Carga crítica de Euler RESULTADOS • Carga crítica de pandeo elástico de Euler, PE: L d 1 L 2 d 2 L 3 L 3 d 3

8. Carga crítica de Euler RESULTADOS • PE EI (Pandeo controlado por Imin) •

8. Carga crítica de Euler RESULTADOS • PE EI (Pandeo controlado por Imin) • PE 1/L 2 (Si una columna es más larga, se vuelve más propensa al pandeo) • PE es independiente de Fy. (conforme a las suposiciones indicadas)

8. Carga crítica de Euler P P L D ²EI L² Gráfica Carga-Deformación RESULTADOS

8. Carga crítica de Euler P P L D ²EI L² Gráfica Carga-Deformación RESULTADOS

8. Carga crítica de Euler ESFUERZO CRITICO DE PANDEO Dividiendo ambos lados de la

8. Carga crítica de Euler ESFUERZO CRITICO DE PANDEO Dividiendo ambos lados de la ecuación de la carga crítica de Euler entre el área de la sección transversal de la columna, A: y sustituyendo r 2 = I / A, donde r es el radio de giro de la sección, podemos definir el esfuerzo crítico de pandeo FE

8. Carga crítica de Euler ESFUERZO CRITICO DE PANDEO FE Fy p²E (L/r)² KL/r

8. Carga crítica de Euler ESFUERZO CRITICO DE PANDEO FE Fy p²E (L/r)² KL/r Curva FE versus KL/r Kl/r = relación de esbeltez efectiva (adimensional) • FE mínimo para L/r máximo. • rmín corresponde a Imín • (L/r)máx corresponde a rmín

9. Longitud efectiva INTRODUCCION • Fórmula de Euler puede aplicarse a otras condiciones de

9. Longitud efectiva INTRODUCCION • Fórmula de Euler puede aplicarse a otras condiciones de apoyo, usando una longitud efectiva de pandeo. • Este concepto utiliza factores de longitud efectiva K para igualar la resistencia de un miembro en compresión con la de un miembro equivalente bi-articulado de longitud KL. Entonces,

9. Longitud efectiva COLUMNAS AISLADAS P L Columna aislada con restricción al giro en

9. Longitud efectiva COLUMNAS AISLADAS P L Columna aislada con restricción al giro en ambos extremos

9. Longitud efectiva COLUMNAS AISLADAS • KLcolumna aislada = longitud columna equivalente biarticulada con

9. Longitud efectiva COLUMNAS AISLADAS • KLcolumna aislada = longitud columna equivalente biarticulada con la misma carga de pandeo elástico. • Además, KLcolumna aislada = distancia entre puntos de inflexión de la forma pandeada (deformada). => KL puede estimarse de la deformada. PCR = ²EI L² PCR = ²EI (0. 7 L)² PCR = ²EI (0. 5 L)² 0. 7 L L L 0. 5 L L

9. Longitud efectiva COLUMNAS AISLADAS Valores del coeficiente K para columnas aisladas con diversas

9. Longitud efectiva COLUMNAS AISLADAS Valores del coeficiente K para columnas aisladas con diversas condiciones de apoyo

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS Factores que afectan K: 1. Condiciones de apoyo

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS Factores que afectan K: 1. Condiciones de apoyo en sus extremos. 2. Características generales de la estructura de la que forma parte el miembro que se está diseñando.

9. Longitud efectiva (a) COLUMNAS EN ESTRUCTURAS (b) Modo de pandeo de columnas en

9. Longitud efectiva (a) COLUMNAS EN ESTRUCTURAS (b) Modo de pandeo de columnas en un marco con desplazamiento lateral

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS A A Ic Ig 0 B = 0

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS A A Ic Ig 0 B = 0 Ic I g B Condición (c), K=1. 0 Condición (f), K=2. 0 (a) (b) Valores de K para marcos simples de un solo nivel con desplazamiento lateral permitido.

9. Longitud efectiva I I Ic Ig A B COLUMNAS EN ESTRUCTURAS Ic =0

9. Longitud efectiva I I Ic Ig A B COLUMNAS EN ESTRUCTURAS Ic =0 Ig Ic = Ig Condición (e), K=2. 0 (c) Inestable, colapso; K = (d) Valores de K para marcos simples de un solo nivel con desplazamiento lateral permitido.

9. Longitud efectiva P COLUMNAS EN ESTRUCTURAS P P P 0. 5 L<KL<0. 7

9. Longitud efectiva P COLUMNAS EN ESTRUCTURAS P P P 0. 5 L<KL<0. 7 L L L L<KL<2 L Puntos de inflexión (a) Marco contraventeado (b) Marco no contraventeado, apoyos fijos Longitud efectiva KL de columnas en marcos o pórticos.

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS • El valor de K para columnas

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS • El valor de K para columnas de marcos arriostrados y no arriostrados depende de la restricción en las juntas, expresada, para cada una de las juntas, por el parámetro dado por: donde Ic y Lc = momento de inercia y longitud libre de cada columna que concurre a la junta. Ib y Lb = momento de inercia y longitud libre de cada trabe que concurre en la junta.

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Método tradicional para determinar los factores de

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Método tradicional para determinar los factores de longitud efectiva de columnas que forman parte de marcos rígidos.

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Nomogramas de Jackson y Morland Desplazamiento lateral

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Nomogramas de Jackson y Morland Desplazamiento lateral permitido Desplazamiento lateral restringido

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Hipótesis de nomogramas de Jackson y Morland:

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Hipótesis de nomogramas de Jackson y Morland: 1. Comportamiento lineal elástico. 2. Miembros de sección transversal constante. 3. Nudos rígidos. 4. Marcos arriostrados: rotaciones en extremos opuestos de vigas son de igual magnitud y producen flexión con curvatura simple. 5. Marcos no arriostrados: rotaciones en extremos opuestos de vigas son de igual magnitud y producen flexión con curvatura doble.

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Hipótesis de nomogramas de Jackson y Morland

9. Longitud efectiva COLUMNAS EN ESTRUCTURAS NOMOGRAMAS Hipótesis de nomogramas de Jackson y Morland (cont. ): 6. Los parámetros de rigidez de todas las columnas son iguales. 7. La restricción en el nudo se distribuye a las columnas, de arriba y de abajo en proporción I/l de cada una de ellas. 8. Todas las columnas se pandean simultáneamente.

10. Relaciones de esbeltez INTRODUCCION En general se tiene que para diferentes ejes se

10. Relaciones de esbeltez INTRODUCCION En general se tiene que para diferentes ejes se tendrán diferentes valores de K, L y r. Estos valores dependen: • del eje de las secciones transversales alrededor del que se presente el pandeo, • de las condiciones en sus extremos y • de la manera en que esté soportado lateralmente.

10. Relaciones de esbeltez INTRODUCCION Armadura de cuerdas paralelas d h Columna L Armadura

10. Relaciones de esbeltez INTRODUCCION Armadura de cuerdas paralelas d h Columna L Armadura de cuerdas paralelas contraventeo longitudinal h/2 Puntal Columnas Diagonales de contraventeo

10. Relaciones de esbeltez INTRODUCCION Armadura Y X Orientación de las columnas Diagonal de

10. Relaciones de esbeltez INTRODUCCION Armadura Y X Orientación de las columnas Diagonal de contraventeo X Columna Pandeo alrededor del eje de mayor resistencia (Eje X-X) de menor resistencia (Eje Y-Y)

10. Relaciones de esbeltez COLUMNA CON DOS EJES DE SIMETRIA Perfil W A A

10. Relaciones de esbeltez COLUMNA CON DOS EJES DE SIMETRIA Perfil W A A A-A Pandeo alrededor del eje débil (menor I) A A-A Pandeo alrededor del eje fuerte (mayor I)

10. Relaciones de esbeltez COLUMNA CON DOS EJES DE SIMETRIA P E 2 EI

10. Relaciones de esbeltez COLUMNA CON DOS EJES DE SIMETRIA P E 2 EI x L 2 2 EI y 2 L Carga crítica de Euler versus L Pandeo alrededor del eje de mayor resistencia Pandeo alrededor del eje de menor resistencia L

10. Relaciones de esbeltez Lx=a Lz=a/2 MIEMBROS ARMADOS Punto de la cuerda soportado lateralmente

10. Relaciones de esbeltez Lx=a Lz=a/2 MIEMBROS ARMADOS Punto de la cuerda soportado lateralmente z Y A X d A h=a A Cuerda superior. Y a a a A L d z X Sección formada por cuatro ángulos de lados iguales Corte A-A Montante r = ry ; x Corte A-A Relaciones de esbeltez de la cuerda superior de una armadura b Kx L r x Kz L rz Ky L r y r z de un solo ángulo Relaciones de esbeltez de una columna armada

10. Relaciones de esbeltez MIEMBROS ARMADOS 1 d 2 b 60 t d 2

10. Relaciones de esbeltez MIEMBROS ARMADOS 1 d 2 b 60 t d 2 b Cuando d 1 r y 1 d 2 Y Y X Ky L y ry 50 Cuando Ky L y ry d 1 r y 1 40 Kx L x , rx Kx L x 0. 7 rx Kx L x , 0. 8 r x 0. 8 0. 6 Ky L y ry Y 1 Y X X t b Columna en compresión formada por varios perfiles

10. Relaciones de esbeltez MIEMBROS ARMADOS La 3 d 1 b Extremo del miembro

10. Relaciones de esbeltez MIEMBROS ARMADOS La 3 d 1 b Extremo del miembro d 1 d 3 La 60 t b /2; d 1 2 1 1 b KL r 140 ( r mín. de la diagonal) 45° 2 b (KL/r)máx. es la relación de esbeltez de diseño del miembro completo. d 2 Miembros en compresión compuestos por varios perfiles. Celosías y diafragmas t

11. Esfuerzos residuales DEFINICION Los esfuerzos residuales son distribuciones autoequilibrantes de esfuerzo axial que

11. Esfuerzos residuales DEFINICION Los esfuerzos residuales son distribuciones autoequilibrantes de esfuerzo axial que se generan en la sección transversal de miembros de acero durante su fabricación

11. Esfuerzos residuales ORIGEN Esfuerzos residuales se generan a lo largo de la longitud

11. Esfuerzos residuales ORIGEN Esfuerzos residuales se generan a lo largo de la longitud completa del miembro: • Enfriamiento desigual de perfiles estructurales laminados en caliente. • Enfriamiento desigual de perfiles hechos con tres o cuatro placas soldadas. • Enderezado en frío o contraflecha (camber) de miembros (vigas o armaduras).

11. Esfuerzos residuales ORIGEN Esfuerzos residuales se generan localmente en el miembro: • Operaciones

11. Esfuerzos residuales ORIGEN Esfuerzos residuales se generan localmente en el miembro: • Operaciones de taller: punzonado o corte con soplete oxiacetilénico. • Soldadura en conexiones extremas de miembros estructurales (calentamiento y enfriamiento irregulares del metal base y de aportación).

11. Esfuerzos residuales MIEMBROS LAMINADOS • Cuando un perfil laminado en caliente se produce

11. Esfuerzos residuales MIEMBROS LAMINADOS • Cuando un perfil laminado en caliente se produce en una laminadora, se permite su enfriamiento lento en el medio ambiente. • Algunas partes de la sección transversal se enfrían más rápidamente que otras. Los extremos de los patines y la parte central del alma de un perfil I ó H se enfrían primero que las zonas de unión de alma y patines, porque tienen una área más grande queda expuesta al medio ambiente.

11. Esfuerzos residuales MIEMBROS LAMINADOS DISTRIBUCION TIPICA res - + Alma - Patín res

11. Esfuerzos residuales MIEMBROS LAMINADOS DISTRIBUCION TIPICA res - + Alma - Patín res + - - A res (-) res = 703 máx 2 a 1 100 kg/cm d. A = 0 Perfil estructural W laminado

11. Esfuerzos residuales MIEMBROS LAMINADOS DISTRIBUCION TIPICA Esfuerzos residuales en perfiles laminados

11. Esfuerzos residuales MIEMBROS LAMINADOS DISTRIBUCION TIPICA Esfuerzos residuales en perfiles laminados

11. Esfuerzos residuales MIEMBROS SOLDADOS • Perfiles armados I: distribución de esfuerzos residuales similar

11. Esfuerzos residuales MIEMBROS SOLDADOS • Perfiles armados I: distribución de esfuerzos residuales similar a perfiles laminados en caliente. • Esfuerzos residuales en miembros soldados > que esfuerzos residuales en los laminados en caliente.

11. Esfuerzos residuales MIEMBROS SOLDADOS Esfuerzos residuales en secciones cajón soldadas

11. Esfuerzos residuales MIEMBROS SOLDADOS Esfuerzos residuales en secciones cajón soldadas

11. Esfuerzos residuales EFECTOS COLUMNA CORTA + - P - res (-) res máx

11. Esfuerzos residuales EFECTOS COLUMNA CORTA + - P - res (-) res máx - + - D Lo Perfil W Area = A Esfuerzos residuales Fy E y Curva esfuerzo-deformación Ensaye de una columna corta

11. Esfuerzos residuales EFECTOS COLUMNA CORTA P Sección transversal sin esfuerzos residuales AFy 3

11. Esfuerzos residuales EFECTOS COLUMNA CORTA P Sección transversal sin esfuerzos residuales AFy 3 2 A Fy - (-) res máx 4 1 2 3 4 Sección transversal con esfuerzos residuales 1 y Lo D Curva carga-deformación

11. Esfuerzos residuales EFECTOS COLUMNA CORTA prom Fy ET (-) Fy - res máx

11. Esfuerzos residuales EFECTOS COLUMNA CORTA prom Fy ET (-) Fy - res máx E ET = módulo tangente Curva esfuerzo promedio versus deformación.

11. Esfuerzos residuales MODULO TANGENTE • La pendiente de la curva esfuerzo deformación se

11. Esfuerzos residuales MODULO TANGENTE • La pendiente de la curva esfuerzo deformación se representa como módulo tangente Para spromedio £ Fy - sres máx ( -) Para s promedio ³ Fy - sres máx ( -) : ET = E : ET < E

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL • Se considera una columna que inicialmente es

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL • Se considera una columna que inicialmente es perfectamente recta. P L D Columna articulada en ambos extremos

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL • Teoría del módulo tangente: – Carga crítica

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL • Teoría del módulo tangente: – Carga crítica de pandeo Pcr = p 2 ET I (KL ) 2 = carga de pandeo correspondiente al módulo tangente – Esfuerzo crítico de pandeo FT = p 2 ET PT = = esfuerzo de pandeo correspondiente 2 A æ KL ö al módulo tangente ç ÷ è r ø

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL 1. Pandeo elástico FE £ Fy - sres

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL 1. Pandeo elástico FE £ Fy - sres máx ET = E, FE = p 2 E 2 æ KL ö ç ÷ è r ø (-)

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL 2. Pandeo inelástico FE > Fy - sres

11. Esfuerzos residuales EFECTOS COLUMNA GENERAL 2. Pandeo inelástico FE > Fy - sres máx FT = p 2 ET 2 æ KL ö ç ÷ è r ø (-)

11. Esfuerzos residuales FT = EFECTOS COLUMNA GENERAL PT A 2 Fy ET KL

11. Esfuerzos residuales FT = EFECTOS COLUMNA GENERAL PT A 2 Fy ET KL r 2 2 Fy - E KL r (-) res máx Pandeo inelástico 2 Pandeo elástico Curva de resistencia de la columna basada en la teoría de módulo tangente. KL r

12. Modos de pandeo de miembros en compresión P P a) Pandeo por flexión

12. Modos de pandeo de miembros en compresión P P a) Pandeo por flexión y b) Pandeo por flexotorsión

12. Modos de pandeo de miembros en compresión PANDEO FLEXOTORSIONAL Factores principales que influyen

12. Modos de pandeo de miembros en compresión PANDEO FLEXOTORSIONAL Factores principales que influyen para que una pieza se pandee por torsión o flexotorsión: • La sección tiene poca rigidez a la torsión, comparada con la rigidez a la flexión. • La columna tiene una longitud relativamente pequeña, y que la sección no es simétrica alrededor de un eje.

12. Modos de pandeo de miembros en compresión PANDEO FLEXOTORSIONAL Secciones susceptibles al pandeo

12. Modos de pandeo de miembros en compresión PANDEO FLEXOTORSIONAL Secciones susceptibles al pandeo por torsión o flexotorsión

12. Modos de pandeo de miembros en compresión • Ecuación diferencial del pandeo por

12. Modos de pandeo de miembros en compresión • Ecuación diferencial del pandeo por torsión donde G: módulo de corte J: constante de torsión Cw: constante de alabeo r 0: radio de giro polar PANDEO TORSIONAL

12. Modos de pandeo de miembros en compresión • Carga crítica de pandeo por

12. Modos de pandeo de miembros en compresión • Carga crítica de pandeo por torsión donde Kz. L: longitud efectiva de pandeo torsional PANDEO TORSIONAL

13. Resistencia de columnas de acero FACTORES • Esbeltez del miembro (L/r) • Restricciones

13. Resistencia de columnas de acero FACTORES • Esbeltez del miembro (L/r) • Restricciones de los apoyos de la columna (factor de longitud efectiva K) • Presencia de esfuerzos residuales y fluencia • Curvatura inicial • Excentricidad de la carga

13. Resistencia de columnas de acero EFECTO CURVATURA INICIAL P Forma inicial (curvatura) de

13. Resistencia de columnas de acero EFECTO CURVATURA INICIAL P Forma inicial (curvatura) de la columna antes de aplicar la carga P L D Do Forma de la columna pandeada Columna aislada con curvatura inicial

13. Resistencia de columnas de acero P = E ²EI L² P EFECTO CURVATURA

13. Resistencia de columnas de acero P = E ²EI L² P EFECTO CURVATURA INICIAL o=0 Teoría elástica =0 Columna real o D o Gráfica PE contra

13. Resistencia de columnas de acero EFECTO CURVATURA INICIAL • Límite de la ASTM

13. Resistencia de columnas de acero EFECTO CURVATURA INICIAL • Límite de la ASTM para falta de rectitud máxima permisible (out-of- straightness) en miembros de acero: • Medida promedio en fuera de rectitud (out-ofstraightness) para columnas de acero:

13. Resistencia de columnas de acero P L e D Columna aislada con carga

13. Resistencia de columnas de acero P L e D Columna aislada con carga excéntrica EFECTO EXCENTRICIDAD

13. Resistencia de columnas de acero P = E p²EI EFECTO EXCENTRICIDAD P e=0

13. Resistencia de columnas de acero P = E p²EI EFECTO EXCENTRICIDAD P e=0 L² Teoría elástica e=0 Columna real D PE contra

13. Resistencia de columnas de acero METODOS DE CALCULO 1. Método experimental (Ensayes): Se

13. Resistencia de columnas de acero METODOS DE CALCULO 1. Método experimental (Ensayes): Se carga una columna hasta que ocurra el pandeo; se mide la carga máxima que puede soportar la columna. 2. Análisis numérico: Recientemente se han desarrollado técnicas de análisis numéricos (métodos de elementos finitos, etc. ) que permiten determinar analíticamente la resistencia al pandeo de una columna de acero. Estas técnicas requieren complementar información de la curvatura inicial y de los esfuerzos residuales.

13. Resistencia de columnas de acero P 2 PE = D Pérdida de resistencia

13. Resistencia de columnas de acero P 2 PE = D Pérdida de resistencia debido a o y a la fluencia L 2 2 PT = P EI METODOS ENSAYES ET I L 2 PCR L experimento D Curva P-

13. Resistencia de columnas de acero Banda de resultados Resumen de resultados experimentales METODOS

13. Resistencia de columnas de acero Banda de resultados Resumen de resultados experimentales METODOS ENSAYES

13. Resistencia de columnas de acero • Criterio de diseño Pu ≤ c Pn

13. Resistencia de columnas de acero • Criterio de diseño Pu ≤ c Pn (LRFD) ó c = 0. 9 (LRFD) ESPECIFICACIONES AISC 2005 P ≤ Pn/Wc (ASD) Wc = 1. 67 (ASD) • Resistencia nominal Pn = Fcr · Ag donde: P = Carga de diseño Pu = Carga de diseño mayorada Pn = Resistencia nominal c = Factor de reducción de resistencia (adimensional) Wc = Factor de seguridad (adimensional)

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 Miembros de sección no esbelta

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 Miembros de sección no esbelta • Pandeo por flexión (elementos con doble simetría) – Pandeo elástico: Esfuerzo crítico de Euler

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Pandeo por flexión (elementos

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Pandeo por flexión (elementos con doble simetría) – Pandeo inelástico: Esfuerzo crítico de Euler

13. Resistencia de columnas de acero FE = FCR ESPECIFICACIONES AISC 2005 2 E

13. Resistencia de columnas de acero FE = FCR ESPECIFICACIONES AISC 2005 2 E KL 2 r Fy (0. 658 KL r 2 Fy 2 E )F y 0. 877 FE 0. 39 Fy Elástico Inelástico 1. 5 * E Fy Curva Fcr versus KL/r KL r

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 Columna típica de edificio de

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 Columna típica de edificio de acero – Longitud efectiva, KL = 350 cm (aproximadamente 12 ft) – Radio de giro, r = 7. 5 cm (ASTM A 36) (ASTM A 572 Gr. 50)

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Pandeo torsional o flexo-torsional

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Pandeo torsional o flexo-torsional – Ángulos dobles y elementos con forma de T donde Fcry es la tensión critica de pandeo por flexión con respecto al eje y, y

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Pandeo torsional o flexo-torsional

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Pandeo torsional o flexo-torsional – Otras secciones: usar ecuaciones de pandeo por flexión con Fe modificado • Secciones con doble simetría: • Secciones con un eje de simetría (eje y): • Secciones asimétricas: resolver

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 Miembros armados • Usar ecuaciones

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 Miembros armados • Usar ecuaciones para miembros laminados o soldados con esbeltez modificada – Conectores intermedios con pernos apretados – Conectores intermedios soldados o con pernos pretensados

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Restricciones dimensionales – Esbeltez

13. Resistencia de columnas de acero ESPECIFICACIONES AISC 2005 • Restricciones dimensionales – Esbeltez de componentes entre elementos conectores – Esbeltez de elementos conectores