The PANDA Experiment at FAIR Marco Destefanis Universit

  • Slides: 42
Download presentation
The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino for the

The PANDA Experiment at FAIR Marco Destefanis Università degli Studi di Torino for the PANDA Collaboration Hadron Structure 2013 Tatranské Matliare (Slovakia) June 30 - July 04, 2013

Overview • Physics topics @ PANDA • Form Factors • Drell-Yan process and background

Overview • Physics topics @ PANDA • Form Factors • Drell-Yan process and background • Hypernuclei • PANDA spectrometer • Summary

Future GSI and Facility for Antiproton and Ion Research Primary beams: • Proton •

Future GSI and Facility for Antiproton and Ion Research Primary beams: • Proton • Heavy Ions • Factor 100 -1000 over present in intensity Secondary Beams: • Radioactive beams • Antiprotons 3 - 30 Ge. V 1 -2 107 /s Storage and Cooler Rings: • Radioactive beams • e – A collider • 1011 stored and cooled 0. 8 - 14. 5 Ge. V antiprotons

High Energy Storage Ring HESR 1011 stored and cooled 0. 8 -15 Ge. V/c

High Energy Storage Ring HESR 1011 stored and cooled 0. 8 -15 Ge. V/c antiprotons Characteristics Pmax = 15 Ge. V/c Lmax = 2· 1032 cm-2 s-1 Ø < 100 m p/p < 10 -5 internal target Cooling: electron/stochastic High res. mode: L = 1031 cm-2 s-1 High lum. mode: L = 2· 1032 cm-2 s-1 p/p < 10 -5 p/p < 10 -4

Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation

Antiproton power pbar beams can be cooled -> excellent resonance resolution Preliminary expectation

The PANDA Physics • Confinement Why are there no free quarks? • Hadron mass

The PANDA Physics • Confinement Why are there no free quarks? • Hadron mass Where is the mass of the proton coming from? • Are there other color neutral objects? • What is the structure of the nucleon? • What are the spin degrees of freedom? J. Ritman, Status of PANDA, 8 th International Workshop on Heavy Quarkonium 2011

The PANDA Physics • Meson spectroscopy*: • D mesons • charmonium • glueballs, hybrids,

The PANDA Physics • Meson spectroscopy*: • D mesons • charmonium • glueballs, hybrids, tetraquarks, molecules • Charmed and multi-strange baryon spectroscopy* • Electromagnetic processes (FF, pp→e+e-, pp→ , Drell-Yan) • Properties of single and double hypernuclei • Properties of hadrons in nuclear matter * Presented by V. Mochalov

ppbar Cross Section

ppbar Cross Section

ppbar Cross Section–Exclusive Final States

ppbar Cross Section–Exclusive Final States

The PANDA Potential • All JPC allowed for qq are accessible in pp Formation

The PANDA Potential • All JPC allowed for qq are accessible in pp Formation • JPC not allowed for qq possible Production T. Johansson, PANDA at FAIR, Excited QCD 2012, Peniche (Portugal)

Meson Spectroscopy

Meson Spectroscopy

The New XYZ States

The New XYZ States

Discovery of Zc±(3900)

Discovery of Zc±(3900)

QCD Dynamics The experimental data set available is far from being complete. All strange

QCD Dynamics The experimental data set available is far from being complete. All strange hyperons and single charmed hyperons are energetically accessible in pp collisions at PANDA. In PANDA pp ΛΛ, ΛΞ, ΞΞ , ΣΣ, ΩΩ, ΛcΛc, ΣcΣc, ΩcΩc can be produced allowing the study of the dependences on spin observables. By comparing several reactions involving different quark flavours the OZI rule and its possible violation, can be tested

p+pbar -> e+e- events generation L = 2 10 32 cm-2 s-1 Generator: →

p+pbar -> e+e- events generation L = 2 10 32 cm-2 s-1 Generator: → 2 fb-1 in 100 days |GM| = 22. 5 (1 + q 2 / 0. 71)-2 (1 + q 2 / 3. 6)-1 = |GE|/|GM| lower sensitivity @ higher q 2 M. Sudol et al. , EPJ A 44 (2010) 373 E. Tomasi-Gustafsson, M. P. Rekalo, PLB 504 (2001) 291

PANDA Scenario: Expected Results L = 2 10 32 cm-2 s-1 → 2 fb-1

PANDA Scenario: Expected Results L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 PS 170: R=|GE|/|GM| G. Bardin et al. , NPB 411 (1994) 3 p. QCD inspired: V. A. Matveev et al. , LNC 7 (1973) 719 S. J. Brodsky et al. , PRL 31 (1973) 1153 VDM: Ba. BAR F. Iachello, PLB 43 (1973) 191 Extended VDM: E. L. Lomon, PRC 66 (2002) 045501 Individual determination of |GE| and |GM| up to q 2 14 (Ge. V/c)2 !! M. Sudol et al. , EPJ A 44 (2010) 373 PS 170 PANDA sim

PANDA Scenario: Expected Results L = 2 10 32 cm-2 s-1 → 2 fb-1

PANDA Scenario: Expected Results L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E 835: M. Andreotti et al. , PLB 559 (2003) 20 M. Ambrogiani et al. , PRD 60 (1999) 032002 Fenice: A. Antonelli et al. , NPB 517 (1998) 3 PS 170: G. Bardin et al. , NPB 411 (1994) 3 E 760: T. A. Armstrong et al. , PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM 1: B. Delcourt et al. , PLB 86 (1979) 395 DM 2: D. Bisello et al. , NPB 224 (1983) 379 BES: M. Ablikim et al. , PLB 630 (2005) 14 Absolute accessible up to q 2 28 (Ge. V/c)2 M. Sudol et al. , EPJ A 44 (2010) 373

PANDA Scenario: Asymptotic Behaviours L = 2 10 32 cm-2 s-1 → 2 fb-1

PANDA Scenario: Asymptotic Behaviours L = 2 10 32 cm-2 s-1 → 2 fb-1 in 100 days BABAR: B. Aubert et al. PRD 73 (2006) 012005 E 835: M. Andreotti et al. , PLB 559 (2003) 20 M. Ambrogiani et al. , PRD 60 (1999) 032002 Fenice: A. Antonelli et al. , NPB 517 (1998) 3 PS 170: G. Bardin et al. , NPB 411 (1994) 3 E 760: T. A. Armstrong et al. , PRD 56 (1997) 2509 CLEO: T. K. Pedlar et al. , PRL 95 (2005) 261803 DM 1: B. Delcourt et al. , PLB 86 (1979) 395 DM 2: D. Bisello et al. , NPB 224 (1983) 379 BES: M. Ablikim et al. , PLB 630 (2005) 14 Probing the Phragmèn-Lindelöf theorem: E. Tomasi-Gustafsson, 12 th International Conference on Nuclear Reaction Mechanisms, Villa Monastero, Varenna, Italy, 15 - 19 Jun 2009, pp. 447, ar. Xiv: 0907. 4442 v 1 [nucl-th]

TMD: KT-dependent Parton Distributions Twist-2 PDFs Transversity Sivers Boer-Mulders Distribution functions Twist-2 U L

TMD: KT-dependent Parton Distributions Twist-2 PDFs Transversity Sivers Boer-Mulders Distribution functions Twist-2 U L T Chirality even , odd h 1,

TMD PDF Investigation ➠ Energies @ FAIR unique energy range up to s~30 Ge.

TMD PDF Investigation ➠ Energies @ FAIR unique energy range up to s~30 Ge. V 2 with PANDA up to s~200 Ge. V 2 with PAX @ much higher energies → big contribution from sea-quarks ➠ Process SIDIS → convolution with FF Drell-Yan → PDF only pp annihilations: each valence quark can contribute to the diagram

Drell-Yan Process • Drell-Yan: pp -> + -X Kinematics x 1, 2 = mom

Drell-Yan Process • Drell-Yan: pp -> + -X Kinematics x 1, 2 = mom fraction of parton 1, 2 = x 1 • x 2 = M 2/s x. F = x 1 - x 2 Collins-Soper frame: Phys. Rev. D 16 (1977) 2219.

Drell-Yan Cross Section UNPOLARISED SINGLE-POLARISED . U = N(cos 2φ>0) D = N(cos 2φ<0)

Drell-Yan Cross Section UNPOLARISED SINGLE-POLARISED . U = N(cos 2φ>0) D = N(cos 2φ<0) Asymmetry R. D. Tangerman and P. J. Mulders, Phys. Rev. D 51, 3357 -3372 (1995)

Di-Lepton Production pp -> l+l-X CERN NA 51 450 Ge. V/c Fermilab E 866

Di-Lepton Production pp -> l+l-X CERN NA 51 450 Ge. V/c Fermilab E 866 800 Ge. V/c R. S. Towell et al. , Phys. Rev. D 64, 052002 (2001) A. Baldit et al. , Phys. Lett. 332 -B, 244 (1994)

Phase space for Drell-Yan processes x 1, 2 = mom fraction of parton 1,

Phase space for Drell-Yan processes x 1, 2 = mom fraction of parton 1, 2 = x 1 • x 2 x. F = x 1 - x 2 = const: hyperbolae x. F = const: diagonal PANDA 1. 5 Ge. V/c 2 ≤ M ≤ 2. 5 Ge. V/c 2 PAX @ HESR symmetric HESR collider 1

Drell-Yan Process and Background • Drell-Yan: pp -> + -X cross section 1 nb

Drell-Yan Process and Background • Drell-Yan: pp -> + -X cross section 1 nb @ s = 30 Ge. V 2 • Background: pp -> + -X, 2 +2 -X, …… cross section 20 -30 b m = 105 Me. V/c 2; m 145 Me. V/c 2 average primary pion pairs: 1. 5 • Background studies: needed rejection factor of 107

DY Asymmetries @ Vertex UNPOLARISED SINGLE-POLARISED 1 < q. T < 2 Ge. V/c

DY Asymmetries @ Vertex UNPOLARISED SINGLE-POLARISED 1 < q. T < 2 Ge. V/c 2 < q. T < 3 Ge. V/c x. Px P x. P 500 KEv included in asymmetries Acceptance corrections crucial! Physics Performance Report for PANDA ar. Xiv: 0903. 3905 x. P

DY Asymmetries @ Vertex Statistical errors for 500 KEv generated ) x. P R

DY Asymmetries @ Vertex Statistical errors for 500 KEv generated ) x. P R = L ·σ·ɛ = 2· 1032 cm-2 s-1 × x 0. 8· 10 -33 cm 2× 0. 33 = 0. 05 s-1 ~ 130 Kev/month Physics Performance Report for PANDA ar. Xiv: 0903. 3905 x. P

Double Strange Systems 3 different systems contain double strangeness (S = -2) n p

Double Strange Systems 3 different systems contain double strangeness (S = -2) n p Exotic hyperatom: e- Interactions: X--nucleus: interplay between the Coulomb and nuclear potential X- From hyperatom to X- hypernucleus: X absorption Doubly strange hypernucleus: n p p X- n Interactions: X-N n p L From X- hypernucleus to LL hypernucleus: after X N LL L p n STORI’ 11 - F. Iazzi Double hypernucleus: Interactions: L-L Politecnico di Torino&INFN

Which Physics with Hyperatoms? X - : M = 1. 32132 [Ge. V/c 2];

Which Physics with Hyperatoms? X - : M = 1. 32132 [Ge. V/c 2]; t= [s]; S = -2 e- n p 16. 39. 10 -11 p n • Stopped X- are captured into atomic (high) levels X- undergoes an hyperatomic cascade X-rays are emitted in the range 0÷ 1. 2 Me. V (12 C) Absorption from an atomic level into nucleus ends the atomic cascade Bohr radius in lowest levels(n=2, 3): ≈ 15 – 25 [fm] in the region close to the nucleus: • Atomic orbitals overlap nucleus: Coulomb and Nuclear interaction shift the levels and broad them • shift and width can be measured (only last level ) X- X-ray spectroscopy (from X -) in the range: ≈ 0. 1 – 1 [Me. V] No existing data! STORI’ 11 - F. Iazzi • • Politecnico di Torino&INFN

Which Physics with ΛΛ Hypernuclei? Formed by X- p ΛΛ reaction inside nucleus Physics

Which Physics with ΛΛ Hypernuclei? Formed by X- p ΛΛ reaction inside nucleus Physics (I): ΛΛ strong interaction (only possible in double hypernuclei) n L p p L n • Quarks: s-s interaction • YY potential: attractive/repulsive? In One Boson Exchange mechanism: ΛΛ : only non strange, I =0 meson exchange (w, h. . . ) • hyperfragments distribution: dependence on YY potential Physics (II): ΛΛ weak interaction (only possible in double hypernuclei) Non Mesonic Hyperon Induced Decay: • ΛΛ Λ n : (expected ΓΛn << Γfree ) (pΛ/N = 433 Me. V/c) • ΛΛ Σ-p : (expected ΓΣp << Γfree ) (pΣ/N = 321 Me. V/c) 25 Measurements 20 Strong interaction: • DBΛΛ(AZΛΛ) = BΛΛ(AZΛΛ ) - 2 BΛ(A-1 ZΛ) (from g spectroscopy) Weak interaction: • momentum of p from L decay • momentum of p from LL S – p • momentum of – from L , S decay STORI’ 11 - F. Iazzi Politecnico di Torino&INFN B. E. 15 10 5 DBLL 0 0 -5 5 10 15 A Several A data core of ΛΛ interaction

The PANDA Detector STT Detectors Physics Performance Report for PANDA ar. Xiv: 0903. 3905

The PANDA Detector STT Detectors Physics Performance Report for PANDA ar. Xiv: 0903. 3905

The PANDA Detector STT Detectors Detector requirements: • nearly 4 solid angle (partial wave

The PANDA Detector STT Detectors Detector requirements: • nearly 4 solid angle (partial wave analysis) • high rate capability (2· 107 annihilations/s) • good PID ( , e, , , K, p) • momentum resolution (~1%) • vertex info for D, K 0 S, L (cτ =123 m for D 0, p/m ≈ 2) • efficient trigger (e, , K, D, L) • no hardware trigger (raw data rate ~ TB/s) Physics Performance Report for PANDA ar. Xiv: 0903. 3905

The Micro-Vertex Detector FAIRNESS 2012, L. Zotti

The Micro-Vertex Detector FAIRNESS 2012, L. Zotti

The Micro-Vertex Detector FAIRNESS 2012, L. Zotti

The Micro-Vertex Detector FAIRNESS 2012, L. Zotti

Tracking Detectors I. Lehmann, Spin-Praha 2012

Tracking Detectors I. Lehmann, Spin-Praha 2012

Cherenkov Detectors I. Lehmann, Spin-Praha 2012

Cherenkov Detectors I. Lehmann, Spin-Praha 2012

Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012

Electromagnetic Calorimeters I. Lehmann, Spin-Praha 2012

Muon Detector System Iarocci Tubes working in proportional mode Ar+CO 2 gas mixture Prototype

Muon Detector System Iarocci Tubes working in proportional mode Ar+CO 2 gas mixture Prototype ready FE electronics in production MDT cross section MDT layout TDR for the PANDA Muon System, 2 nd Draft (May 2011) JINR - Dubna

Range System Prototype JINR - Dubna Muon Detector Layout MDT’s Wires Strips Barrel 2133

Range System Prototype JINR - Dubna Muon Detector Layout MDT’s Wires Strips Barrel 2133 17064 49916 End Cap 618 4944 8911 Muon Filter 424 3392 6876 Forward Range System 576 4608 7128 Total 3751 30008 72831

Particle Identification EMC PANDA PID Requirements: particle identification essential for PANDA momentum range 200

Particle Identification EMC PANDA PID Requirements: particle identification essential for PANDA momentum range 200 Me. V/c – 10 Ge. V/c Extreme high rates 2· 107 Hz good particle separation (K- e ) different detectors needed for PID STT MVD Physics Performance Report for PANDA ar. Xiv: 0903. 3905 DIRC

PANDA Phyisics Performance Report All the details of the PANDA experimental program are reported

PANDA Phyisics Performance Report All the details of the PANDA experimental program are reported in the “Physics Performance Report”. Within this document, we present the results of detailed simulations performed to evaluate detector performance on many benchmark channels. ar. Xiv: 0903. 3905 v 1

Summary Ø PANDA physics program Ø unique program accessible with antiproton beams Ø addresses

Summary Ø PANDA physics program Ø unique program accessible with antiproton beams Ø addresses key questions Ø high discovery potential Ø high statistics and high precision results Ø Beginning in 2018