Status of the ALS and APEX RF Systems

  • Slides: 33
Download presentation
Status of the ALS and APEX RF Systems at LBNL RF Group: ME Group:

Status of the ALS and APEX RF Systems at LBNL RF Group: ME Group: K. Baptiste, S. Kwiatkowski (retired), Q. Du, M. Vinco, J. Julian (retired) P. Mc. Kean (retired), G. Harris 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Scope • ALS RF Systems • Injection System • Electron Gun (125 MHz) •

Scope • ALS RF Systems • Injection System • Electron Gun (125 MHz) • GTL Sub-Harmonic Bunchers (125 MHz & 500 MHz) • S-Band Linac Modulators (2. 998 GHz) • Booster RF System (500 MHz) • Storage Ring RF System (500 MHz) • SRRF Reliability • 3 rd Harmonic Cavities • APEX RF Systems • VHF Photo-Cathode Gun • L-Band Buncher • L-Band Linac Modulator 9 th CWRF Workshop - ESRF, June 21 -25, 2016

ALS’s RF Systems 1. 9 Ge. V STORAGE RING SYNCHROTRON LTB BRF 50 Me.

ALS’s RF Systems 1. 9 Ge. V STORAGE RING SYNCHROTRON LTB BRF 50 Me. V LINAC 1. 9 Ge. V BOOSTER SYNCHROTRON SR RF 3 rd HC 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Injection System – Electron Gun & Linac Electron Gun 125 MHz Buncher 500 MHz

Injection System – Electron Gun & Linac Electron Gun 125 MHz Buncher 500 MHz Buncher 3 GHz Buncher Acceleration Guide #1 9 th CWRF Workshop - ESRF, June 21 -25, 2016 Acceleration Guide #1

Gun thru 3 GHz LINAC RF System a o t e r d a

Gun thru 3 GHz LINAC RF System a o t e r d a e r l l g ro p t u n n Co a g F n i R s LL o p l o a r P igit D 9 th CWRF Workshop - ESRF, June 21 -25, 2016

E. Gun Electronics Rack & Block Diagram E. Gun Rack (LI 01) r o

E. Gun Electronics Rack & Block Diagram E. Gun Rack (LI 01) r o f e ics d a r n g o r p t u c e n El a l g o n r i t s n o o p C o r P e& iv r D In Service: 1989 Block Diagram 9 th CWRF Workshop - ESRF, June 21 -25, 2016

E. Gun Hot Deck, Gun Body & Cathode Eimac YU-171 Gun Body Cathode Lifetime:

E. Gun Hot Deck, Gun Body & Cathode Eimac YU-171 Gun Body Cathode Lifetime: ~4 yrs Gun Pulse Generation Gun Electr. Cart, Hot Deck 9 th CWRF Workshop - ESRF, June 21 -25, 2016

125 MHz & 500 MHz Sub-Harmonic Bunchers a o t e r d a

125 MHz & 500 MHz Sub-Harmonic Bunchers a o t e r d a e r l l g ro p t u n n Co a g F n i R s LL o p l o a Pr igit D In Service: 1989 Maintenance Items: • Amplifier Air Cooling • SS Drive amplifier • HVPS 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Sub-Harmonic Buncher Amplifiers Eimac 3 CPX 800 A 7 125 MHz Cavity Amplifier 500

Sub-Harmonic Buncher Amplifiers Eimac 3 CPX 800 A 7 125 MHz Cavity Amplifier 500 MHz Cavity Amplifier Eimac CV-2222 Eimac CV-2404 Triode Gain = 15 d. B Up to 20 k. W Pulse, 6 k. W In service: 1989 Lifetime: 10 -25 yrs Cost: $1550 ea 9 th CWRF Workshop - ESRF, June 21 -25, 2016

LINAC PFN Modulators Thales TV-2002 Do. D: 24 MW, 2 us, 1 Hz Lifetime:

LINAC PFN Modulators Thales TV-2002 Do. D: 24 MW, 2 us, 1 Hz Lifetime: Mod #1: 17 yrs, 10 yrs, 2+ mo Mod #2: 9 yrs, 14 yrs, 2 yr, 2+ yrs In Service: 1989 Low Gain Klystrons Failures: • Thyratron CX-1666 • HV Caps • HVPS & Cable • Focus PS & Magnets 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Booster Ring RF Parameters for 1. 9 Ge. V Present Beam current 4 m.

Booster Ring RF Parameters for 1. 9 Ge. V Present Beam current 4 m. A Dipoles Radiation < 5 k. W Cavity Dissipation 43 k. W W. G. & other losses < 6 k. W Total RF Power Reqr’d 54 k. W Total RF Power Installed 80 k. W 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Booster Ring RF System a o t e r d a e r l

Booster Ring RF System a o t e r d a e r l l g ro p t u n n Co a g F n i R s LL o p l o a r P igit D 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Booster Ring RF Amplifier Commercial IOT Based Broadcast TV Transmitter (modified) Cavity Power, 54

Booster Ring RF Amplifier Commercial IOT Based Broadcast TV Transmitter (modified) Cavity Power, 54 k. W pk SP Failures: • Grid Bias PS • HV Cable which led to an IOT failure • HV Isolation Transformer • Thyratron In Service: 2006 9 th CWRF Workshop - ESRF, June 21 -25, 2016

IOT Amplifier CPI CHK 2800 W Tuning Range: 473 -750 MHz CPI K 2

IOT Amplifier CPI CHK 2800 W Tuning Range: 473 -750 MHz CPI K 2 H 80 W 470 -860 MHz Specification: 80 k. W CW 130 k. W pk Gain = > 23 d. B Eff. > 65% Operating Parameters Vk = 32. 1 k. V Ik = 2. 8 A Eff = 60. 3% Gain = 23. 1 d. B RF Out = 54 k. W pk IOT #1: 3 yrs (18 k hrs) Failed due to poisoned cathode from HV cable fault IOT #2: 7+ yrs (+45 k hrs) 9 th CWRF Workshop - ESRF, June 21 -25, 2016

SR Ring RF System Parameters for 1. 9 Ge. V Present Future Beam current

SR Ring RF System Parameters for 1. 9 Ge. V Present Future Beam current (m. A) 500 Number of Insertion Devices 11 13 Gap Positions Nom Min Dipoles Radiation (k. W) 142 142 Insertion Device Radiation (k. W) 25 46 46 55 Power Loss for 3 rd HC (k. W) 6 9 9 9 Cavity Dissipation (x 2) (k. W) 43 43/50 43/53 W. G. & other losses (k. W) 7 8/10 10/12 Total RF Power Reqr’d (k. W) 266 293/305 304/322 Total RF Power Installed (k. W) 300 ~360 Cav/Window Power Limit (k. W) 330 9 th CWRF Workshop - ESRF, June 21 -25, 2016 330

Upgraded SR RF System DLLRF to be installed Jan-2017 9 th CWRF Workshop -

Upgraded SR RF System DLLRF to be installed Jan-2017 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Upgrade Sequence Phase I Establish New Klystron Site #2 Phase II Upgrade HVDC PS,

Upgrade Sequence Phase I Establish New Klystron Site #2 Phase II Upgrade HVDC PS, Replace Crowbar with HV Dis-Conn SW, New Klstron in Site #1 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Waveguide Switch Matrix Phase IIIa 9 th CWRF Workshop - ESRF, June 21 -25,

Waveguide Switch Matrix Phase IIIa 9 th CWRF Workshop - ESRF, June 21 -25, 2016

Digital LLRF & Controls Phase IIIb, Jan 2017 9 th CWRF Workshop - ESRF,

Digital LLRF & Controls Phase IIIb, Jan 2017 9 th CWRF Workshop - ESRF, June 21 -25, 2016

SR Klystron, Thales 2161 L Operational Hours • • Black Heat Standby HV Transmit

SR Klystron, Thales 2161 L Operational Hours • • Black Heat Standby HV Transmit 4773 29605 29126 27736 Klystron Operating Parameters • • Vk = -53. 1 k. V Va = 32. 8 k. V Eff = 51. 53% μP = 1. 61 Ik = 9. 55 A Ia = 1. 6 m. A Gain = 41. 41 d. B RF Output = 261. 7 k. W In Service: 2012 Failures: • Mod-Anode PS • PLC SP zeroing • Filter Capacitor 9 th CWRF Workshop - ESRF, June 21 -25, 2016

SR RF Reliability Percentage of Scheduled Beam Time Lost toto. SRRF &Non-Latching Faults by.

SR RF Reliability Percentage of Scheduled Beam Time Lost toto. SRRF &Non-Latching Faults by. Year Fiscal Year of Scheduled Lost SRRF & Faults by Fiscal 1. 20% 1. 00% 0. 80% 0. 60% 0. 40% 0. 20% 0. 00% FY 1999 FY 2000 FY 2001 FY 2002 FY 2003 FY 2004 FY 2005 FY 2006 FY 2007 FY 2008 FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 FY 2016 Goal for SRRF system based on 5000 hours of User Beam time: 0. 3% 9 th CWRF Workshop - ESRF, June 21 -25, 2016

SRRF Reliabilty SRRF Faults, (in hours): Meantime between faults, FY 2004 - FY 2016*

SRRF Reliabilty SRRF Faults, (in hours): Meantime between faults, FY 2004 - FY 2016* SRRF Faults, MTBF (in hours): Mean between faults, FY 2004 - FY 2016* 700. 0 600. 0 500. 0 400. 0 300. 0 200. 0 100. 0 FY 2004 FY 2005 FY 2006 FY 2007 FY 2008 FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 Goal for SRRF system based on 5000 hours of User Beam time: 500 hrs 9 th CWRF Workshop - ESRF, June 21 -25, 2016 FY 2016

SR RF Reliability SRRF Faults, MTTR (in minutes): Mean time to recovery, FY 2004

SR RF Reliability SRRF Faults, MTTR (in minutes): Mean time to recovery, FY 2004 - FY 2016* 400 350 300 250 200 150 100 50 0 FY 2004 FY 2005 FY 2006 FY 2007 FY 2008 FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 Goal for SRRF system based on 5000 hours of User Beam time: 1. 5 hrs 9 th CWRF Workshop - ESRF, June 21 -25, 2016 FY 2016

3 rd Harmonic Cavities (passive) Failures: • Vacuum Feedthru 9 th CWRF Workshop -

3 rd Harmonic Cavities (passive) Failures: • Vacuum Feedthru 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX RF (Advanced Photocathode Experiment) 9 th CWRF Workshop - ESRF, June 21 -25,

APEX RF (Advanced Photocathode Experiment) 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX RF Systems Linac L-Band Klystron Modulator 25 MW, 10 us Buncher LBand SSA

APEX RF Systems Linac L-Band Klystron Modulator 25 MW, 10 us Buncher LBand SSA 4 x 2. 5 k. W CW Gun VHF Tetrode Amplifier 2 x 60 k. W CW 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX Gun RF Tetrode Amplifier System A S S Tube #1 Tube #2 a

APEX Gun RF Tetrode Amplifier System A S S Tube #1 Tube #2 a m d e l i t • Black Heat 30027 29895 s u y b t • Standby 7348 7300 s c o e t s j i o • HV 5007 4957 g f th t n p i I • Transmit 4910 4867 os o I n S p o L o i r Tetrode TH 571 B Parameters P vers e LC h t HPA HVPS • V = 9. 7 k. V I = 7. 47 A r fo • V = 692 V I = 165 m. A Operational Hours a a s s • Vg = -140 V • Eff = 62. 5% Ig = 10 m. A RF Out = 45 k. W Failures: • Filament PS • SSA Drive Amp Fan Control • SSA Drive Amp PS Fail Intrlk • SSA Drive Amp Pre-Amp • SSA Drive Amp Output Module • HV Current Limiting Resistors In Service: 2011 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX Buncher SSA RF Amplifier 1. 3 GHz 4 x 2. 5 k. W

APEX Buncher SSA RF Amplifier 1. 3 GHz 4 x 2. 5 k. W SSA • Operates at 2. 0 k. W • ~200 hrs Failures: • Logic card modification In Service: 2015 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX Linac RF System (Klystron and Modulator) Solid State L-Band Modulator 10 us, 10

APEX Linac RF System (Klystron and Modulator) Solid State L-Band Modulator 10 us, 10 Hz Linac 1 probe 25 MW – 10 ms 10 Hz Linac 2 probe Linac 1 coupler reverse In Service: 2015, ~300 hrs 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX RF (Advanced Photocathode Experiment) C C 1 Overheated area 9 th CWRF Workshop

APEX RF (Advanced Photocathode Experiment) C C 1 Overheated area 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX RF (Advanced Photocathode Experiment) ~ 19” from RF window ~ 27” from Gun

APEX RF (Advanced Photocathode Experiment) ~ 19” from RF window ~ 27” from Gun coupler plane l. RF/4 ~ 15. 9” Missing from measurements, additional ~5” for length of coupling loop Melted Teflon bushing 1 Hole The internal conductor This hole is at a current node. The copper is melting here not arcing. This hole would then be at 27” + 5” = 32”, ~ l. RF/2 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX RF (Advanced Photocathode Experiment) Air side Copper transition EHT (Enhanced Heat Transfer coax

APEX RF (Advanced Photocathode Experiment) Air side Copper transition EHT (Enhanced Heat Transfer coax line) rating from RF Window company: De-rating for 0 PSIG in line = 0. 885 Average Power Rating = 89 k. W derated to 78 k. W Peak Voltage Rating = 13 k. V Peak Power Rating = 3, 685 k. W (Ppk = Vpk^2/Zo). Not specified for how long. APEX max operation conditions: Vacuum side Power per coax line = 60 k. W CW max (50 k. W nominal). Peak Voltage in line = 1. 414*sqrt(Pavg * Zo) = 1. 414*sqrt(60000 * 50) = 2. 45 k. V Peak Power in line = Vpk^2/Zo = 2449^2 / 50 = 120 k. W Peak Power in line from standing wave: Vpk = 4. 9 k. V, Ppk = 480 k. W Facing parts These arc marks are at a voltage maxima. There is no sign of overheating due to high currents. This arcing being ~3” from window would then be at 19” - ~3” = 16”, ~ l. RF/4 The RF power remained ON for > 4 minutes in this condition due to improperly configured intrlks and a lack of synchronization when in pulse mode. Many watt-seconds were delivered during this time. 9 th CWRF Workshop - ESRF, June 21 -25, 2016

APEX RF (Advanced Photocathode Experiment) Thank you 9 th CWRF Workshop - ESRF, June

APEX RF (Advanced Photocathode Experiment) Thank you 9 th CWRF Workshop - ESRF, June 21 -25, 2016