Principi fisici di conversione avanzata Energetica L S

  • Slides: 90
Download presentation
Principi fisici di conversione avanzata (Energetica L. S. ) G. Mazzitelli ENEA Quarta/Quinta Lezione

Principi fisici di conversione avanzata (Energetica L. S. ) G. Mazzitelli ENEA Quarta/Quinta Lezione 1

Terza/Quarta Lezione • Le reazioni nucleari • La fusione -Reazioni di Fusione -Bilancio Energetico

Terza/Quarta Lezione • Le reazioni nucleari • La fusione -Reazioni di Fusione -Bilancio Energetico -Plasma -Moto delle particelle cariche in presenza di campi E e/o B -Il Tokamak -Principio di funzionamento -Equilibrio -Riscaldamento -Stabilità 2

Reazioni Nucleari In un tipico esperimento di laboratorio abbiamo: x+X y+Y dove x è

Reazioni Nucleari In un tipico esperimento di laboratorio abbiamo: x+X y+Y dove x è la particella incidente su un target di nuclei X e y e Y sono i prodotti della reazione rispettivamente un nucleo Y e una particella y Esempio: 3

Reazioni Nucleari • Come in una reazione chimica, in una reazione nucleare il numero

Reazioni Nucleari • Come in una reazione chimica, in una reazione nucleare il numero di protoni e di nucleoni deve essere conservato • La reazione deve conservare l’energia, l’impulso e il momento angolare Calcoliamo il Q della reazione 4

Reazioni Nucleari Assumiamo che X si fermo e che le energie cinetiche delle particelle

Reazioni Nucleari Assumiamo che X si fermo e che le energie cinetiche delle particelle siano molto inferiori alla loro energia a riposo (cinematica non relativistica) Energia iniziale = Energia finale 5

Reazioni Nucleari • Possiamo avere due casi: Q>0 Q<0 energia nucleare è convertita in

Reazioni Nucleari • Possiamo avere due casi: Q>0 Q<0 energia nucleare è convertita in energia cinetica - reazione esotermica l’energia cinetica della particella incidente è convertita in energia di legame reazione endotermica 6

Reazioni Nucleari Esercizio: In una reazione endotermica l’energia cinetica della particella incidente deve essere

Reazioni Nucleari Esercizio: In una reazione endotermica l’energia cinetica della particella incidente deve essere sufficiente anche per l’energia a riposo in più dei prodotti di reazione. Ciò significa che il processo avviene al di sopra di una certa energia minima o soglia. Trovare la formula per l’energia di soglia (trattare il problema nel sistema di riferimento del centro di massa) 7

Reazione di fusione La reazione nucleare consiste nella fusione di due nuclei leggeri che

Reazione di fusione La reazione nucleare consiste nella fusione di due nuclei leggeri che producono un nucleo più pesante di massa inferiore alla somma delle masse iniziali. La reazione determina un rilascio di energia sotto forma di energia cinetica dei prodotti di reazione. DE = mc 2 8

Reazione di fusione • La più promettente reazione di fusione è: 2 + T

Reazione di fusione • La più promettente reazione di fusione è: 2 + T 3 D 1 1 4 + n 1 He 0 2 3. 5 Me. V + 14. 1 Me. V = 17. 6 Me. V 9

Reazione di fusione Calcoliamo il bilancio delle masse: D = (2 - 0. 000994)

Reazione di fusione Calcoliamo il bilancio delle masse: D = (2 - 0. 000994) mp T = (3 - 0. 006284) mp a = (4 - 0. 027404) mp n = (1+0. 001378) mp Dm = 0. 01875 mp E =Dmc 2=2. 818 x 10 -12 joules = 17. 59 Me. V 10

Reazione di fusione La sezione d’urto a basse energie è piccola a causa della

Reazione di fusione La sezione d’urto a basse energie è piccola a causa della repulsione coulombiana che impedisce ai nuclei di avvicinarsi rm=raggio del nucleo 11

Reazione di fusione L’effetto tunnel della meccanica quantistica fa si che il picco della

Reazione di fusione L’effetto tunnel della meccanica quantistica fa si che il picco della sezione d’urto per la reazione D-T avviene ad energie minori di quelle richieste per superare la barriera coulumbiana. Il picco si ha per energie dei nuclei intorno ai 100 Ke. V. Assumendo che le nostre particelle abbiano una distribuzione di velocità maxwelliana il numero di medio reazioni di fusione per 12 unità di tempo e di volume è:

Reazione di fusione 13

Reazione di fusione 13

Bilancio Energetico E’ possibile a “priori” determinare a quali condizioni un plasma termonucleare può

Bilancio Energetico E’ possibile a “priori” determinare a quali condizioni un plasma termonucleare può produrre energia per mezzo delle reazioni di fusione ? Calcoliamo : Energia prodotta da reazioni nucleari D-T P = n. D n. T < s v > E a W/m 3) 14

Bilancio Energetico Energia persa (3 / 2)nk( Ti + Te ) Pl = t.

Bilancio Energetico Energia persa (3 / 2)nk( Ti + Te ) Pl = t. E W/m 3) t. E = tempo di confinamento dell’energia Assumendo Ti = Te n D=n. T = n 2 Uguagliando energia persa e energia prodotta si ha: 3 nk. T n < sv > Wn = 4 t. E 12 k. T n t. E = < sv > Ea 15

Bilancio Energetico Ma tra 10 – 20 ke. V il rate della reazione dentro

Bilancio Energetico Ma tra 10 – 20 ke. V il rate della reazione dentro un 10% è < sv>= 1. 1 x 10 -24 T 2 m 3 s-1 , T in ke. V così che usando E a = 3. 5 Me. V la condizione per l' ignizione diventa : n. Tt. E > 3 x 10 21 m -3 ke. Vs n = densità =1020 m-3 T = temperatura=10 ke. V t. E= tempo di confinamento dell’energia=3 s 16

Bilancio Energetico Con questi valori del triplo prodotto n, T e t. E la

Bilancio Energetico Con questi valori del triplo prodotto n, T e t. E la reazione si autostiene. Ovverosia l’energia cinetica delle particelle a riscalda il plasma senza apporto dall’esterno Quando si raggiunge questa condizione si ha I’ignizione. 17

Il Plasma • Il plasma (quarto stato della materia) è un gas ionizzato •

Il Plasma • Il plasma (quarto stato della materia) è un gas ionizzato • In un plasma gli atomi sono dissociati nei loro costituenti ioni ed elettroni. • Un plasma, come un gas, può essere descritto in termini di densità e temperatura delle particelle. 18

19 14

19 14

Il Plasma Un plasma ha due caratteristiche proprie: – Complessivamente è quasi-neutro; ovverosia le

Il Plasma Un plasma ha due caratteristiche proprie: – Complessivamente è quasi-neutro; ovverosia le cariche di un certo segno non sono mai in eccesso rispetto a quelle di segno contrario. – Campi elettrici e magnetici cambiano sensibilmente le proprietà fisiche del plasma. 20

Il Plasma Quasi-neutralità Questa condizione è ciò che caratterizza un plasma e permette di

Il Plasma Quasi-neutralità Questa condizione è ciò che caratterizza un plasma e permette di definirlo “quantitativamente ” tramite il raggio di Debye: l D >>cost Te n Affinchè un plasma possa essere considerato come un gas di particelle cariche, macroscopicamente neutro, è necessario che la sua dimensione tipica L sia molto più grande di l. D 21

Il Plasma Come in un gas in equilibrio termodinamico, la distribuzione delle velocità delle

Il Plasma Come in un gas in equilibrio termodinamico, la distribuzione delle velocità delle ioni ed elettroni in un plasma è Maxwelliana: 1 ö æ f ( u ) = A exp çmu 2 / KT e è 2 ø dove A è una costante, ½ mu 2 è l’energia cinetica, K è la costante di Boltzmann (K=1. 38 x 10 -16 erg/ºK), f(u)du rappresenta il numero di particelle per cm 3 che hanno velocità compresa tra u e u+du +¥ la densità, o il numero di particelle per cm 3 sarà: n=ò f (u ) du -¥ 22

Il Plasma Supponiamo di perturbare lo stato di equilibrio del plasma con un campo

Il Plasma Supponiamo di perturbare lo stato di equilibrio del plasma con un campo elettrico generato da una particella test di carica positiva +q posizionata nell’origine. Calcoliamo il potenziale elettrostatico f(r). La funzione di distribuzione adesso deve tener conto della nostra particella test e diviene: La densità sarà: i, e ioni ed elettroni 23

Il Plasma Se assumiamo che la perturbazione al potenziale elettrostatico è debole, cioè: qf

Il Plasma Se assumiamo che la perturbazione al potenziale elettrostatico è debole, cioè: qf (r)/KT <<1 Allora possiamo riscrivere l’eq. per la densità e per la densità di carica r 24

Il Plasma Se consideriamo la prima eq. di Maxwell e la relazione tra il

Il Plasma Se consideriamo la prima eq. di Maxwell e la relazione tra il campo elettrico e il potenziale scalare Otteniamo l’equazione di Poisson: 25

Il Plasma Assumendo simmetria sferica abbiamo: dove l. D = e KT / N

Il Plasma Assumendo simmetria sferica abbiamo: dove l. D = e KT / N 0 e 2 risolvendo otteniamo : æ e ö exp( - 2 r / l. D ) f( r ) = çç 2 è 4 prl D ø 26

Il Plasma Pertanto il potenziale decade esponenzialmente e l’effetto della particella test è neutralizzato

Il Plasma Pertanto il potenziale decade esponenzialmente e l’effetto della particella test è neutralizzato su una distanza pari alla lunghezza di Debye che in una utile forma diventa: l. D=2. 35 x 105(T/n)1/2 m, T in e. V In un tokamak 0. 01<l. D<0. 1 mm 27

Il Plasma • Se applichiamo una piccola differenza di potenziale nel plasma scorrente. •

Il Plasma • Se applichiamo una piccola differenza di potenziale nel plasma scorrente. • Se applichiamo un campo magnetico il moto delle ioni ed elettroni non è più random 28

Moto delle particelle L’equazione del moto di una particella di massa m. J e

Moto delle particelle L’equazione del moto di una particella di massa m. J e carica e. J in presenza di un campo magnetico è: dv m. J =e. J v x B dt Se B è uniforme e diretto lungo l’asse z abbiamo: dvx dt = wcjvy dt = wcjvx dvz =0 dt 29

Moto delle particelle dove w cj = e j. B m j è la

Moto delle particelle dove w cj = e j. B m j è la frequenza ciclotronica. Se separiamo vx e vynell’eq. precedente si ha: la cui soluzione è : 30

Moto delle particelle ma v x =dx / dt e v y = dy

Moto delle particelle ma v x =dx / dt e v y = dy / dt per cui int egrando ancora abbiamo : x = -r. Lj cos wcjt y = r. Ljsen wcj t dove r. Lj = v^ wcj = m jv ^ e j. B è il raggio di Larmor 31

Moto delle particelle Pertanto le particelle descrivono delle eliche nella direzione del campo magnetico.

Moto delle particelle Pertanto le particelle descrivono delle eliche nella direzione del campo magnetico. La direzione delle rotazione è tale che il campo magnetico generato è tale da opporsi al campo esterno. Il plasma è diamagnetico 32

Moto delle particelle Se adesso consideriamo la presenza di un campo elettrico l’equazione del

Moto delle particelle Se adesso consideriamo la presenza di un campo elettrico l’equazione del moto diviene: r r dv = q( E + v x B ) m dt r nel caso più semplice che Er// B d dt m v // ) =ej. E // j la particella è accelerata 33

Moto delle particelle Ma cosa succede se il campo magnetico ha un gradiente parallelo

Moto delle particelle Ma cosa succede se il campo magnetico ha un gradiente parallelo a B 34

Moto delle particelle • Assumiamo che le variazione del campo B siano molto piccole

Moto delle particelle • Assumiamo che le variazione del campo B siano molto piccole su una distanza dell’ordine del raggio di Larmor r. L e che il campo sia assisimmetrico ovverosia la componente in q sia nulla. • Partiamo dall’eq. di Maxwell : Ñ·B = 0 35

Moto delle particelle • In coordinate cilindriche 1∂ 1 ∂B q ∂Bz r. Br

Moto delle particelle • In coordinate cilindriche 1∂ 1 ∂B q ∂Bz r. Br ) + + =0 Ñ ·B = r∂ r r ∂q ∂z 1 ∂Bq ma Bq = 0 e = 0 per cui r ∂q ∂Bz 1 ∂ r. Br ) = ∂z r ∂r 36

Moto delle particelle Integrando nell’intervallo di un r. L abbiamo: r. L ò 0

Moto delle particelle Integrando nell’intervallo di un r. L abbiamo: r. L ò 0 ∂ ∂r r. L ò r. Br ) dr = - r 0 ∂Bz ∂z dr ∂Bz se var ia poco nell' int ervallo ∂z 0 < r. L , lo consideriamo cos tan te 37

Moto delle particelle Pertanto: Br = -( r. L / 2 ) ∂ B/

Moto delle particelle Pertanto: Br = -( r. L / 2 ) ∂ B/ ∂ z Se Bz varia poco lo sostituiamo con B Calcoliamo la componente z della forza v ^r. L ∂ B Fz = q[v B - v q. Br ] = q 2 ∂z v ^m ma r. L = q. B 38

Moto delle particelle Per cui si ha: 1 mv ^2 ∂B Fz = 2

Moto delle particelle Per cui si ha: 1 mv ^2 ∂B Fz = 2 B ∂z se definiamo il momento magnetico della particella ruo tan te come allora 1 mv ^2 m= 2 B ∂B Fz = -m ∂z : 39

Moto delle particelle m è molto importante perche è un invariante adiabatico cioè come

Moto delle particelle m è molto importante perche è un invariante adiabatico cioè come la particella si muove in zone di campo più forte o più debole cambia il suo raggio di Larmor ma m rimane invariato. Dimostriamolo! 40

Moto delle particelle Moltiplich iamo la forza per v z d dt 1 d.

Moto delle particelle Moltiplich iamo la forza per v z d dt 1 d. B 2 mv z = - m 2 dt L' energia della particella si conserva cos ì che dm =0 dt c. d. v. 41

Moto delle particelle Ma torniamo all’espressione della forza: 1 mv^2 ∂B Fz = 2

Moto delle particelle Ma torniamo all’espressione della forza: 1 mv^2 ∂B Fz = 2 B ∂z notiamo che: • Non dipende dalla carica elettrica • Respinge le particelle verso le zone di campo B più debole 42

Moto delle particelle Sulla scala di r. L le particelle girano rapidamente intorno al

Moto delle particelle Sulla scala di r. L le particelle girano rapidamente intorno al centro di guida ma in presenza di: 1 E ^B 2 ÑB^B 3 Curvatura di B 4 E(t) Il centro di guida si sposta (drift) 43 perpendicolarmente

Moto delle particelle Drift elettrico E B r r Ex. B vd = r

Moto delle particelle Drift elettrico E B r r Ex. B vd = r 2 B ioni elettroni 44

Moto delle particelle r vd = Drift dovuto ad un gradiente r 1 B

Moto delle particelle r vd = Drift dovuto ad un gradiente r 1 B xÑ B r r. Lj v. V^ 2 2 B ioni B ÑB 45 elettroni

Moto delle particelle Drift dovuto alla curvatura del campo 1 2 r r v

Moto delle particelle Drift dovuto alla curvatura del campo 1 2 r r v // + 2 v^ B x ÑB r vd = B 2 wcj 2 46

Moto delle particelle Drift di polarizzazione r r 1 d. E vd = wcj

Moto delle particelle Drift di polarizzazione r r 1 d. E vd = wcj B dt E B 47

Confinamento magnetico • Abbiamo visto che in presenza di un gradiente di campo parallelo

Confinamento magnetico • Abbiamo visto che in presenza di un gradiente di campo parallelo a B si ha: 48

Confinamento magnetico • Per ovviare alle perdite longitudinali, l’idea più ovvia e quella di

Confinamento magnetico • Per ovviare alle perdite longitudinali, l’idea più ovvia e quella di richiudere il cilindro su stesso a formare un toro. 49

Confinamento magnetico Solo un campo magnetico toroidale non confina le particelle. E’ necessario sovrapporre

Confinamento magnetico Solo un campo magnetico toroidale non confina le particelle. E’ necessario sovrapporre un campo magnetico poloidale. La configurazione magnetica risultante sono delle superfici chiuse l’una dentro l’altra e le particelle si avvolgono su di esse. 50

Confinamento magnetico • Si indica con q il rapporto tra il numero di giri

Confinamento magnetico • Si indica con q il rapporto tra il numero di giri in direzione toroidale m e il numero di giri in direzione polidale n • q è chiamato fattore di sicurezza. Più è alto e maggiore è la stabilità del plasma. • Calcoliamolo: 51

Confinamento magnetico ds j cost 52

Confinamento magnetico ds j cost 52

Calcolo della linea di forza 53

Calcolo della linea di forza 53

Confinamento magnetico Due particelle che partono da punti con lo stesso angolo θ dopo

Confinamento magnetico Due particelle che partono da punti con lo stesso angolo θ dopo un giro toroidale hanno un θ diverso. 2 2’ 1 1’ In altri termini il campo magnetico e dotato di “shear” 54

Confinamento Magnetico • Abbiamo visto che è possibile confinare le particelle medianti opportuni campi

Confinamento Magnetico • Abbiamo visto che è possibile confinare le particelle medianti opportuni campi magnetici. • Ma è impossibile, studiare le proprietà del plasma, seguendo il moto delle singole particelle. Come per un gas, dobbiamo avere una descrizione statistica. 55

Confinamento Magnetico • Senza addentrarci nei dettagli matematici, l’eq. Cinetica Collisionale per un plasma

Confinamento Magnetico • Senza addentrarci nei dettagli matematici, l’eq. Cinetica Collisionale per un plasma è quella di Fokker-Planck • Per molte applicazioni possiamo trattare il plasma come un fluido che ha una densità di particelle n(x, t), una velocità v(x, t) e una pressione p(x, t)funzioni di sole 56 quattro variabili

Confinamento Magnetico • Le eq. che descrivono n, v e P sono ottenute prendendo

Confinamento Magnetico • Le eq. che descrivono n, v e P sono ottenute prendendo i momenti di ordine =0, 1 e 2 dell’eq. di Fokker-Planck(FP) 57

58

58

Confinamento Magnetico • MHD cioè Magnetoidrodinamica è il nome dato alla descrizione fluida del

Confinamento Magnetico • MHD cioè Magnetoidrodinamica è il nome dato alla descrizione fluida del plasma. In questo modello non si distinguono ioni ed elettroni. • Le eq. che descrivono il plasma nel modello mhd ideali sono quelle ricavate dalla eq. Cinetica collisionale più le eq. di Maxwell dell’elettromagnetismo cioè: 59

Confinamento Magnetico 60

Confinamento Magnetico 60

Confinamento Magnetico • Per qualunque sistema la condizione di equilibrio è che su ogni

Confinamento Magnetico • Per qualunque sistema la condizione di equilibrio è che su ogni punto del plasma la forza netta sia zero. • Ciò significa che il primo membro dell’eq. 2 deve essere zero ovverosia che la pressione deve essere bilanciata dalla pressione magnetica P=jx. B 61

Confinamento magnetico • Da questa equazione abbiamo: B· P=0 J· P=0 sono Non gradienti

Confinamento magnetico • Da questa equazione abbiamo: B· P=0 J· P=0 sono Non gradienti ci pressione di lungo forza linee di del le campo magnetico e le superfici magnetiche sono superfici in cui p=cost. Inoltre anche le linee di corrente giacciono sulle superfici magnetiche 62

Il Tokamak 63

Il Tokamak 63

Il Tokamak • Torniamo all’eq. di equilibrio 64

Il Tokamak • Torniamo all’eq. di equilibrio 64

Il Tokamak Nel caso di un cilindro il termine a secondo membro e zero

Il Tokamak Nel caso di un cilindro il termine a secondo membro e zero ovverosia la quantità 65

Il Tokamak B Diamagnetismo jd Basso B Alto p p Basso p Alto B

Il Tokamak B Diamagnetismo jd Basso B Alto p p Basso p Alto B 66

Il Tokamak • Una grandezza fondamentale è il b definito come b è fondamentale

Il Tokamak • Una grandezza fondamentale è il b definito come b è fondamentale poiché più è alto e più un reattore è economico per un dato campo magnetico!! A 10 -15 -Ke. V <sv> ~T 2 e la potenza termonucleare a p 2 67 mentre il costo va come B 2

Equilibrio • Ritorniamo all’eq. (6) in un tokamak la situazione è diversa a causa

Equilibrio • Ritorniamo all’eq. (6) in un tokamak la situazione è diversa a causa della dipendenza del Bt da 1/R per cui il termine a destra dell’eq. non è più nullo • L’anello di plasma tende ad espandersi nel verso dell’asse maggiore e per contrastarlo è necessario imporre un campo verticale creato da una scocca conduttrice o da avvolgimenti esterni 68

Equilibrio 69

Equilibrio 69

Riscaldamento • Abbiamo visto come confinare il plasma ma come lo riscaldiamo ? •

Riscaldamento • Abbiamo visto come confinare il plasma ma come lo riscaldiamo ? • Un plasma è elettroni che Trattandosi di collisioni sono coulombiana composto di ioni ed subiscono collisioni. particelle cariche le dovute all’interazione 70

Riscaldamento • Il campo elettrico nel plasma lo possiamo suddividere in due componenti: una

Riscaldamento • Il campo elettrico nel plasma lo possiamo suddividere in due componenti: una macroscopica che determina il drift delle particelle e che è presente nell’eq. MHD. Il secondo è un campo rapidamente fluttuante che una particelle sperimenta all’interno della sfera di Debye. 71

Riscaldamento • Queste collisioni sono alla base dei fenomeni di trasporto all’interno del plasma

Riscaldamento • Queste collisioni sono alla base dei fenomeni di trasporto all’interno del plasma e che, tralasciando la trattazione matematica, determinano i coefficienti ed i relativi tempi caratteristici del trasporto delle particelle e dell’energia 72

Riscaldamento • Quando applichiamo un campo elettrico al plasma gli elettroni saranno accellerati con

Riscaldamento • Quando applichiamo un campo elettrico al plasma gli elettroni saranno accellerati con una velocità di drift vd controbilanciata dalle collisioni • Le collisioni si oppongono al moto esattamente come avviene in un conduttore percorso da corrente • In assenza di B o parallelo alla corrente: 73

Riscaldamento • La legge di ohm è: • Dove η è la resistività 74

Riscaldamento • La legge di ohm è: • Dove η è la resistività 74

Riscaldamento • Ma ciò che è importante e la dipendenza di h da T-3/2

Riscaldamento • Ma ciò che è importante e la dipendenza di h da T-3/2 che significa che al crescere della temperatura l’efficacia del riscaldamento ohmico dimnuisce e bisogna riscaldare il plasma con sistemi addizionali. • La resistività del plasma per Te~1. 4 ke. V è uguale a quella del rame 75

Riscaldamento • Due sono i sistemi principali di riscaldamento addizionale: – Iniezioni di atomi

Riscaldamento • Due sono i sistemi principali di riscaldamento addizionale: – Iniezioni di atomi neutri veloci – Iniezioni di onde elettromagnetiche • Risonanza ciclotronica elettronica • Risonanza ciclotronica ionica • Risonanza alla frequenza ibrida inferiore 76

Riscaldamento • Una importante caratteristica dei sistemi di riscaldamento addizionale è la possibilità di

Riscaldamento • Una importante caratteristica dei sistemi di riscaldamento addizionale è la possibilità di generare corrente. • In un reattore questo è fondamentale per un funzionamento in continuo 77

Riscaldamento • Su FTU sono installati tre sistemi di riscaldamento addizionale: – Ibrida Inferiore

Riscaldamento • Su FTU sono installati tre sistemi di riscaldamento addizionale: – Ibrida Inferiore (Lower Hybrid) • 8 GHz 6 MW installati di cui 2. 5 MW al plasma. Antenna – Ciclotronica elettronica per Bt= 5 T • 140 GHz 1. 6 MW -Specchi – Onde di Berstein (IBW) 4 th armonica ciclotronica in H a Bt=8 T • 433 MHz 1. 0 MW – Antenna a guide d’onda 78

Riscaldamento • Parlando di riscaldamento è naturale introdurre il parametro di merito più importante

Riscaldamento • Parlando di riscaldamento è naturale introdurre il parametro di merito più importante il tempo di confinamento dell’energia t. E: • Dove P è la potenza totale di input • Il confinamento è determinato dai processi convettivi e conduttivi cosi come dalle perdite radiative 79

Stabilità • In assenza di instabilità il confinamento di una configurazione assisimmetrica toroidale è

Stabilità • In assenza di instabilità il confinamento di una configurazione assisimmetrica toroidale è determinato dalle collisioni coulombiane ma non è così. Gli esperimenti mostrano un disaccordo per il trasporto del calore per gli elettroni che è due ordini di grandezza superiore a quello teorico. Fino ad oggi abbiamo leggi empiriche ma non ancora una soddisfacente teoria delle 80 instabilità.

Stabilità • Alcuni esempi: Kink Instability Sausage Instability 81

Stabilità • Alcuni esempi: Kink Instability Sausage Instability 81

Tokamak FTU JET ITER Circolare D-Shape 0. 935 3. 1 6 Volume del plasma(m

Tokamak FTU JET ITER Circolare D-Shape 0. 935 3. 1 6 Volume del plasma(m 3) 1. 5 80 840 Corrente di plasma(MA) 1. 6 5 15 8 4 5. 3 1. 5 40 Raggio Maggiore (m) Campo Magnetico (T) Durata impulso (s) 82 1000

FTU 83

FTU 83

F T U 84

F T U 84

F T U 85

F T U 85

FTU 86

FTU 86

F T U 87

F T U 87

JE T 88

JE T 88

JE T 89

JE T 89

Tokamak 90

Tokamak 90