La qualit Cours 10 Contrle statistique de la

  • Slides: 53
Download presentation
La qualité Cours 10 Contrôle statistique de la qualité

La qualité Cours 10 Contrôle statistique de la qualité

Plan du cours 2 z z Contrôle de la qualité Contrôle statistique ü Contrôle

Plan du cours 2 z z Contrôle de la qualité Contrôle statistique ü Contrôle par échantillonnage ü Distribution normale ü Distribution de l’échantillon et de la population ü Limites de contrôle ü Contrôle statistique de la qualité ü Cartes de contrôle ü Étapes de construction d’une carte ü Identification des limites de contrôle sur les cartes X et R ü Processus hors contrôle ü Conclusion sur les cartes de contrôle ü La capabilité d’un procédé de fabrication ü Indice de capabilité À répondre z

Contrôle de la qualité z Objectif: s’assurer que le processus de production fonctionne tel

Contrôle de la qualité z Objectif: s’assurer que le processus de production fonctionne tel que désiré Produit …. Étapes …. z z Vérification avant/après la fabrication. Traditionnel Corrections durant la fabrication. Processus conçu pour la qualité. Moderne

Contrôle statistique z Processus Ø. Ø. Ø Prendre action pour Ø. Ø. corriger z

Contrôle statistique z Processus Ø. Ø. Ø Prendre action pour Ø. Ø. corriger z Statistiques Ø. Ø Descriptives ü histogrammes, moyennes, écarts, etc. Ø Prédictives Ø Variables ü. ü. Ø Types de problèmes Ø défaut (critique, majeur, mineur) Ø.

Coûts de contrôle Coût $ Coût total Coût de contrôle Niveau idéal de contrôle

Coûts de contrôle Coût $ Coût total Coût de contrôle Niveau idéal de contrôle Q Coût de livrer des défectueux

Contrôles z z z . . . Intrants Échantillonnage Transformation Contrôle du processus Extrants

Contrôles z z z . . . Intrants Échantillonnage Transformation Contrôle du processus Extrants Échantillonnage

1 - Contrôle par échantillonnage 1. Comment : Ø définir le travail à faire

1 - Contrôle par échantillonnage 1. Comment : Ø définir le travail à faire à chaque station de contrôle: ü procédures à effectuer et les instruments à utiliser (méthode la plus approprié pour faire le contrôle) ü les informations à recueillir ü les décisions à prendre, incluant les critères et les responsabilités pour prendre chaque décision 2. Quand : Ø. 3. Combien d’unités contrôler ? Ø. Ø. Ø. Contrôle par échantillonnage

Échantillonnage Réception d’un lot Échantillonnage et analyse Comparaison des résultats aux standards Acceptation Envoi

Échantillonnage Réception d’un lot Échantillonnage et analyse Comparaison des résultats aux standards Acceptation Envoi au client ou à la fabrication Rejet Décision réaction

Organiser les contrôles. . . z La statistique n’améliore pas la qualité, ce sont

Organiser les contrôles. . . z La statistique n’améliore pas la qualité, ce sont les gens qui produisent l ’amélioration GQT Contrôle CSQ CSP z Prise d’action : Ø éliminer les problèmes chroniques Ø éliminer les problèmes sporadiques Ø régulariser continuellement le processus afin de minimiser les variations CSQ: utilisation de méthodes statistiques CSP: contrôle du processus

Distribution normale s = Écart type Moyenne -3 s -2 s -1 s 68.

Distribution normale s = Écart type Moyenne -3 s -2 s -1 s 68. 26% 95. 46% 99. 73% +1 s +2 s +3 s

Distribution de l’échantillon et de la population (Théorème de la limite centrale) Distribution échantillon

Distribution de l’échantillon et de la population (Théorème de la limite centrale) Distribution échantillon Distribution population Moyenne

Limites de contrôle Distribution échantillon Distribution population Moyenne Limite inférieure Limite supérieure

Limites de contrôle Distribution échantillon Distribution population Moyenne Limite inférieure Limite supérieure

Plan d’échantillonnage z z Historique du fournisseur (processus) Approche Ø. Ø. Ø. z Échantillonnage

Plan d’échantillonnage z z Historique du fournisseur (processus) Approche Ø. Ø. Ø. z Échantillonnage Ø. Ø. Ø.

Définition z Un plan d'échantillonnage est une procédure qui permet de déterminer si un

Définition z Un plan d'échantillonnage est une procédure qui permet de déterminer si un lot doit être accepté ou rejeté. Ø En général, un plan d’échantillonnage est défini par les variables (n; c) et r Lot de taille N Échantillon de taille n

Erreurs possibles z z Risque du fournisseur: que le client refuse un bon lot

Erreurs possibles z z Risque du fournisseur: que le client refuse un bon lot ( ) Risque du client: accepter un lot de niveau de qualité à peine suffisant ( )

Symboles utilisés z N: taille de la population z n: taille de l’échantillon z

Symboles utilisés z N: taille de la population z n: taille de l’échantillon z d: nombre d’unités défectueuses z p: pourcentage d’unités défectueuses z c: critère d’acceptation z Pa: probabilité d’accepter un lot z NQT: niveau de qualité toléré (client) z NQA: niveau de qualité accepté (fournisseur)

Contrôle statistique de la qualité

Contrôle statistique de la qualité

Cartes de contrôle z Une approche pour contrôler un processus de manière à identifier

Cartes de contrôle z Une approche pour contrôler un processus de manière à identifier les causes de variations ciblées et signaler les correctifs à apporter z CSP se base sur des cartes de contrôle Ø. Ø. Ø.

a) Les cartes de contrôle z z Représentations graphiques Suite d’images de la production

a) Les cartes de contrôle z z Représentations graphiques Suite d’images de la production obtenues à partir de données relevées pendant la production (sur des échantillons ou des valeurs de paramètres) z Permettent Ø. Ø de distinguer les causes assignables de variation des causes aléatoires Ø. Ø de prévoir la performance du procédé lorsqu’il est sous contrôle Ø d’établir des indices d ’amélioration du procédé (capabilité du procédé) z Utilisation simple et efficace, interprétation standardisée, objective

z Il existe deux types de cartes de contrôle 1. . 2. .

z Il existe deux types de cartes de contrôle 1. . 2. .

Les cartes de contrôle aux mesures z Pour les variables quantitatives (poids, diamètre, épaisseur,

Les cartes de contrôle aux mesures z Pour les variables quantitatives (poids, diamètre, épaisseur, température, volume, puissance consommée, dosage, résistance thermique…) z Leur établissement est fondé Ø Sur l’hypothèse (qui est à vérifier) que la distribution des valeurs suit une loi connue (Normale ou autre) Ø Sur les propriétés des échantillons (relations entre échantillons et population)

z Les cartes de contrôle aux mesures Ø deux graphiques distincts qui permettent d’analyser

z Les cartes de contrôle aux mesures Ø deux graphiques distincts qui permettent d’analyser le procédé tel qu’il existe sous l’angle de la dispersion et du centrage. Ø On compare des niveaux moyens de production à différents instants. z La plus ou moins bonne variabilité du procédé sera appréciée si les points se situent dans le voisinage de la tendance centrale z Plus les points s’éloignent, plus forte sera la probabilité de voir apparaître des causes assignables

b) Les cartes de contrôle pour attributs z Défectueux p: utilisée pour contrôler le

b) Les cartes de contrôle pour attributs z Défectueux p: utilisée pour contrôler le pourcentage de défectueux dans un processus np: utilisée pour contrôler le nombre de défectueux dans un processus z Défauts c: utilisée pour contrôler le nombre de défauts produits par un processus u: utilisée pour contrôler le nombre de défauts dans une unité

Variables X: utilisée pour contrôler la moyenne des valeurs d’un échantillon R: utilisée pour

Variables X: utilisée pour contrôler la moyenne des valeurs d’un échantillon R: utilisée pour contrôler les écarts de variation sur différents échantillons s: utilisée pour contrôler la moyenne des écarts de variation x: utilisée pour mesurer la moyenne mobile des observations

Étapes de construction d’une carte 1. 2. 3. 4. 5. 6. 7. . .

Étapes de construction d’une carte 1. 2. 3. 4. 5. 6. 7. . . Calculer les limites de contrôle et donner des instructions spécifiques en ce qui a trait à l’interprétation des résultats et aux actions correctives.

Limites pour les cartes X et R = = z. LCSx= x + A

Limites pour les cartes X et R = = z. LCSx= x + A 2 R et LCIx= x - A 2 R z. LCSR = D 4 R et LCSR = D 3 R z. Où: R = écart moyen des échantillons = x = moyenne de la moyenne des échantillons A 2 D 3 et D 4 sont donnés par une table de facteurs basée sur un calcul à 3

Identification des limites de contrôle sur les cartes X et R

Identification des limites de contrôle sur les cartes X et R

Modèle de carte X et R

Modèle de carte X et R

Exemple de carte X et R

Exemple de carte X et R

Calcul

Calcul

Limites pour les cartes p et np z. LCSp = p + 3 sp

Limites pour les cartes p et np z. LCSp = p + 3 sp et LCIp = p - 3 sp z. LCSnp= np + 3 np(1 -p) et LCInp= np + 3 np(1 -p) z. Où: sp est l’écart type moyen dans la proportion de défectueux p est la proportion de défectueux

Limites pour les cartes c et u z LCSc = c + 3 c

Limites pour les cartes c et u z LCSc = c + 3 c et LCIc = c – 3 c z LCSu= u + 3 u/ni et LCIu= u + 3 u/ni z Où: c est le nombre moyen de défauts u est le nombre moyen de défauts par unité de mesure

Exemple de carte C Échantillon 1 2 3 4 5 6 7 8 9

Exemple de carte C Échantillon 1 2 3 4 5 6 7 8 9 # défauts 3 2 4 5 1 2 4 1 2 Échantillon 10 11 12 13 14 15 16 17 18 Total # défauts 1 3 4 2 1 3 1 45

Calcul c = 45 / 18 = 2, 5 LCSc = c + 3

Calcul c = 45 / 18 = 2, 5 LCSc = c + 3 c = 2, 5 + 3 2, 5 = 7, 24 LCIc = c – 3 c = 2, 5 - 3 2, 5 = - 2, 24 ou 0

Exemple de carte P Échantillon 1 2 3 4 5 6 7 8 9

Exemple de carte P Échantillon 1 2 3 4 5 6 7 8 9 10 # défectueux 14 10 12 13 9 11 10 12 13 10 Échantillon 11 12 13 14 15 16 17 18 19 20 Total # défectueux 8 12 9 10 11 10 8 12 10 16 220

Calcul p = (220 / 20) / 100 = 0, 11 sp = p

Calcul p = (220 / 20) / 100 = 0, 11 sp = p ( 1 – p) = , 11 ( 1 - , 11) = , 03 n 100 LCSp = p + 3 sp LCIp = p - 3 sp = , 11 + 3 (, 03) = , 11 – 3 (, 03) = , 20 = , 02

Processus hors contrôle z 1 point hors limites z 9 points consécutifs dans la

Processus hors contrôle z 1 point hors limites z 9 points consécutifs dans la limite à 1 , tous du même côté de la ligne du centre z 6 points consécutifs présentant une augmentation ou une diminution z 14 points consécutifs en dents de scie z 2 points sur 3 consécutifs au delà entre 2 et 3 z 4 points sur 5 consécutifs entre 1 et 2 ou plus z 15 points consécutifs en deçà de 1 z 8 points consécutifs d’un même côté de la ligne du centre sans qu’aucun ne soit à l’intérieur de 1

z Un procédé peut être sous contrôle sans rencontrer les tolérances visées z Ou

z Un procédé peut être sous contrôle sans rencontrer les tolérances visées z Ou rencontrer les tolérances tout en étant hors contrôle z Les cartes de contrôles sont un outil de prévention: elles permettent de prévoir la performance qualité d ’un procédé: Ø Elles sont conçues pour être utilisées par les travailleurs eux-même durant la production.

Variation anormale ciblée Horscontrôle LCS Moyenne Variation normale aléatoire LCI Variation anormale ciblée 0

Variation anormale ciblée Horscontrôle LCS Moyenne Variation normale aléatoire LCI Variation anormale ciblée 0 1 2 3 4 5 6 7 8 9 # d’échantillon 10 11 12 13 14 15

LCS LCI 1 2 # d’échantillon 3 4

LCS LCI 1 2 # d’échantillon 3 4

(moyenne du processus se déplace vers le haut) Distribution des échantillons LCS Déplacement des

(moyenne du processus se déplace vers le haut) Distribution des échantillons LCS Déplacement des défauts carte x LCI LCS carte R LCI N’identifie pas la tendance

Conclusion sur les cartes de contrôle z z Tous les procédés ont une variation

Conclusion sur les cartes de contrôle z z Tous les procédés ont une variation naturelle: c’est l’étude de cette variation qui nous renseigne sur la capacité opérationnelle du procédé La réduction de la variation naturelle permet d’obtenir une meilleure marge de manœuvre quant au respect des tolérances et d ’augmenter la valeur du produit fabriqué Il peut aussi surgir des variations anormales dont il faudra identifier les causes et éventuellement les éliminer C’est pour distinguer les variation normales des variations anormales que l’on construit les cartes de contrôles

z Puisque les paramètres d’une carte de contrôle décrivent le comportement normal d’un procédé,

z Puisque les paramètres d’une carte de contrôle décrivent le comportement normal d’un procédé, ils n’auront pas à être changés tant que le procédé n’aura pas été changé intentionnellement. z Il y a plusieurs conditions à satisfaire pour que le procédé soit considéré sous contrôle : Ø Les points doivent être à l’intérieur des limites Ø Leur distribution doit être symétrique Ø Centrée sur la moyenne Ø Ne pas montrer de tendance ou de cycle visible z Fournit un outil à l’opérateur pour lui indiquer quand tourner le «bouton» : sinon, des ajustements intempestifs ne feront que déstabiliser davantage le processus.

z z z Le fait qu’un procédé soit hors contrôle ne signifie pas qu’on

z z z Le fait qu’un procédé soit hors contrôle ne signifie pas qu’on doive tout arrêter pour recher la cause: on se donne généralement une marge de manœuvre face aux tolérances face à la nature et aux causes possibles d’un dérèglement. Les cartes de contrôles sont un outil de détection : elles n’améliorent pas en soi la qualité du procédé tant qu’on implique pas les opérateurs dans la mesure et la gestion des cartes et des initiatives d’améliorations continues. Les limites de contrôles des cartes et les tolérances sont deux choses séparées : la seconde parle de ce que l’on désire et la première de ce que l’on peut faire.

La capabilité d’un procédé de fabrication z Capabilité machine Ø Représente la mesure de

La capabilité d’un procédé de fabrication z Capabilité machine Ø Représente la mesure de la performance de la machine seule, indépendamment des autres facteurs z Capabilité du procédé Ø Reflètele fonctionnement de l’ensemble des facteurs de production z Capabilité Ø Se définit comme le rapport entre la performance demandée (de la machine ou du procédé selon le cas) et la performance réelle

Indice de capabilité Calcul capabilité machine z Être dans le cas d’un contrôle de

Indice de capabilité Calcul capabilité machine z Être dans le cas d’un contrôle de mesures z Vérifier que la distribution suit une loi normale z Comparer les possibilités de la machine aux tolérances spécifiées : Ø Car, avant d’agir sur le procédé et le mettre sous contrôle, il faut en effet s’assurer que la machine en tant que telle est apte à fabriquer des produits conformes aux spécifications

Il s’agit en quelque sorte de situer la distribution par rapport aux spécifications et

Il s’agit en quelque sorte de situer la distribution par rapport aux spécifications et de calculer le rapport entre l’intervalle de tolérance et six écarts-types de la distribution : Ts : tolérance supérieure Ti : tolérance inférieure i : écart-type instantané Cm : capabilité machine Ts – Ti = IT = intervalle de tolérance FORMULE : Cp = Marge de tolérance des spécifications => Cp = Ts - Ti = Ts Ti Capacité du processus 6 6 R /d 2

z On dira que la machine est apte si • 0<Cp<1 • Le processus

z On dira que la machine est apte si • 0<Cp<1 • Le processus ne peut respecter les spécifications • Cp = 1 • Le processus peut tout juste satisfaire les spécifications • 1<Cp<1. 3 • Le processus respecte les spécifications. Toutefois, la moindre variation risque de produire des extrants non conformes • Cp > 1. 3 • Le processus est capable de respecter les spécifications Ø La capabilité machine doit se calculer à partir de données relevées dans un laps de temps très court incluant seulement la dispersion de la machine, en dehors de toute modification des autres facteurs de production (matière, mains d’œuvre…)

Capabilité et contrôle Capabilité Capable Non capable En contrôle Hors contrôle IDÉAL

Capabilité et contrôle Capabilité Capable Non capable En contrôle Hors contrôle IDÉAL

Exercices

Exercices

Exercice 1 Préparez la carte X et R pour les données suivantes Année 2000

Exercice 1 Préparez la carte X et R pour les données suivantes Année 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Classe Moyenne A B C 65 73 56 67 64 59 75 79 62 77 78 79 67 81 69 76 78 64 61 74 69 64 64 73 61 67 71 70 58 76 70. 7 72. 0 62. 3 73. 6 64. 6 67. 3 74. 6 71. 0 60. 3 75. 7 Créer la carte de contrôle sur Excel Étendue 13 15 11 14 8 17 7 15 4 3

Exercice # 2 Préparez la carte X et R pour les données suivantes

Exercice # 2 Préparez la carte X et R pour les données suivantes

À faire 1. Le problème suivant Envoyez par courriel ce problème, à votre professeur

À faire 1. Le problème suivant Envoyez par courriel ce problème, à votre professeur avant le prochain cours.