Chapter 42 Circulation and Gas Exchange Power Point

  • Slides: 97
Download presentation
Chapter 42 Circulation and Gas Exchange Power. Point® Lecture Presentations for Biology Eighth Edition

Chapter 42 Circulation and Gas Exchange Power. Point® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Overview: Trading Places • Every organism must exchange materials with its environment. • Exchanges

Overview: Trading Places • Every organism must exchange materials with its environment. • Exchanges ultimately occur at the cellular level. • In unicellular organisms, these exchanges occur directly with the environment. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • For most cells making up multicellular organisms, direct exchange with the environment

• For most cells making up multicellular organisms, direct exchange with the environment is not possible. • Gills are an example of a specialized exchange system in animals. • Internal transport and gas exchange are functionally related in most animals. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

How does a feathery fringe help this animal survive?

How does a feathery fringe help this animal survive?

Circulatory systems link exchange surfaces with cells throughout the body • In small and/or

Circulatory systems link exchange surfaces with cells throughout the body • In small and/or thin animals, cells can exchange materials directly with the surrounding medium. • In most animals, transport systems connect the organs of exchange with the body cells. • Most complex animals have internal transport systems that circulate fluid. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Gastrovascular Cavities • Simple animals, such as cnidarians, have a body wall that is

Gastrovascular Cavities • Simple animals, such as cnidarians, have a body wall that is only two cells thick and that encloses a gastrovascular cavity. • This cavity functions in both digestion and distribution of substances throughout the body. • Some cnidarians, such as jellies, have elaborate gastrovascular cavities. • Flatworms have a gastrovascular cavity and a large surface area to volume ratio. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Internal transport in gastrovascular cavities Circular canal Mouth Pharynx Mouth Radial canal (a) The

Internal transport in gastrovascular cavities Circular canal Mouth Pharynx Mouth Radial canal (a) The moon jelly Aurelia, a cnidarian 5 cm 2 mm (b) The planarian Dugesia, a flatworm

Open and Closed Circulatory Systems • More complex animals have either open or closed

Open and Closed Circulatory Systems • More complex animals have either open or closed circulatory systems. • Both systems have three basic components: – A circulatory fluid = blood or hemolymph. – A set of tubes = blood vessels. – A muscular pump = the heart. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • In insects, other arthropods, and most molluscs, blood bathes the organs directly

• In insects, other arthropods, and most molluscs, blood bathes the organs directly in an open circulatory system. • In an open circulatory system, there is no distinction between blood and interstitial fluid, and this general body fluid is more correctly called hemolymph. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • In a closed circulatory system, the blood is confined to vessels and

• In a closed circulatory system, the blood is confined to vessels and is distinct from the interstitial fluid. • Closed systems are more efficient at transporting circulatory fluids to tissues and cells. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Open and closed circulatory systems Heart Hemolymph in sinuses surrounding organs Pores Blood Small

Open and closed circulatory systems Heart Hemolymph in sinuses surrounding organs Pores Blood Small branch vessels In each organ Interstitial fluid Dorsal vessel (main heart) Tubular heart (a) An open Heart circulatory system Auxiliary hearts (b) A closed Ventral vessels circulatory system

Organization of Vertebrate Closed Circulatory Systems • Humans and other vertebrates have a closed

Organization of Vertebrate Closed Circulatory Systems • Humans and other vertebrates have a closed circulatory system, often called the cardiovascular system. • The three main types of blood vessels are: arteries - away from the heart. veins - toward the heart. capillaries - exchange with body cells. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • Arteries branch into arterioles and carry blood to capillaries. • Networks of

• Arteries branch into arterioles and carry blood to capillaries. • Networks of capillaries called capillary beds are the sites of chemical exchange between the blood and interstitial fluid. • Venules converge into veins and return blood from capillaries to the heart. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • Vertebrate hearts contain two or more chambers. • Blood enters through an

• Vertebrate hearts contain two or more chambers. • Blood enters through an atrium and is pumped out through a ventricle. Atria - receive blood Ventricles - pump blood Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Single Circulation • Bony fishes, rays, and sharks have single circulation with a two-chambered

Single Circulation • Bony fishes, rays, and sharks have single circulation with a two-chambered heart. • In single circulation, blood leaving the heart passes through two capillary beds before returning. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Single circulation in fishes Gill capillaries Artery Heart Gill circulation Ventricle Atrium Vein Systemic

Single circulation in fishes Gill capillaries Artery Heart Gill circulation Ventricle Atrium Vein Systemic circulation Systemic capillaries

Double Circulation • Amphibian, reptiles, and mammals have double circulation. • Oxygen-poor and oxygen-rich

Double Circulation • Amphibian, reptiles, and mammals have double circulation. • Oxygen-poor and oxygen-rich blood are pumped separately from the right and left sides of the heart. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Double circulation in vertebrates Amphibians Reptiles Lung and skin capillaries Pulmocutaneous circuit Atrium (A)

Double circulation in vertebrates Amphibians Reptiles Lung and skin capillaries Pulmocutaneous circuit Atrium (A) Ventricle (V) Systemic capillaries Lung capillaries Right systemic aorta Atrium (A) Left Right Systemic circuit Mammals and Birds Pulmonary circuit A V Right Pulmonary circuit A A V Left Systemic capillaries Left systemic aorta A V V Right Left Systemic circuit Systemic capillaries

 • In reptiles and mammals, oxygen-poor blood flows through the pulmonary circuit to

• In reptiles and mammals, oxygen-poor blood flows through the pulmonary circuit to pick up oxygen through the lungs. • In amphibians, oxygen-poor blood flows through a pulmocutaneous circuit to pick up oxygen through the lungs and skin. • Oxygen-rich blood delivers oxygen through the systemic circuit. • Double circulation maintains higher blood pressure in the organs than does single circulation. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Adaptations of Double Circulatory Systems Amphibians: • Frogs / amphibians have a three-chambered heart:

Adaptations of Double Circulatory Systems Amphibians: • Frogs / amphibians have a three-chambered heart: 2 atria and 1 ventricle. • The ventricle pumps blood into a forked artery that splits the ventricle’s output into the pulmocutaneous circuit and the systemic circuit. • Underwater, blood flow to the lungs is nearly shut off. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Reptiles (Except Birds) • Turtles, snakes, and lizards have a threechambered heart: two atria

Reptiles (Except Birds) • Turtles, snakes, and lizards have a threechambered heart: two atria and one ventricle. • In alligators, caimans, and other crocodilians a septum - partially or fully divides the ventricle. • Reptiles have double circulation, with a pulmonary circuit - lungs and a systemic circuit. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

RA --> RV --> LUNGS --> LA --> LV --> Body Mammals • Mammals

RA --> RV --> LUNGS --> LA --> LV --> Body Mammals • Mammals and birds have a four-chambered heart with two atria and two ventricles. • The left side of the heart pumps and receives only oxygen-rich blood, while the right side receives and pumps only oxygen-poor blood. • Mammals and birds are endotherms and require more O 2 than ectotherms. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Coordinated cycles of heart contraction drive double circulation in mammals • Blood begins its

Coordinated cycles of heart contraction drive double circulation in mammals • Blood begins its flow with the right ventricle pumping blood to the lungs. • In the lungs, the blood loads O 2 and unloads CO 2 • Oxygen-rich blood from the lungs enters the heart at the left atrium and is pumped through the aorta to the body tissues by the left ventricle. • The aorta provides blood to the heart through the coronary arteries. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • Blood returns to the heart through the superior vena cava (deoxygenated blood

• Blood returns to the heart through the superior vena cava (deoxygenated blood from head, neck, and forelimbs) and inferior vena cava (deoxygenated blood from trunk and hind limbs). • The superior vena cava and inferior vena cava flow into the Right Atrium - RA. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Superior vena cava Returns deoxygenated blood from body to heart RA Capillaries of head

Superior vena cava Returns deoxygenated blood from body to heart RA Capillaries of head and 7 Forelimbs - EXCHANGE Pulmonary artery Capillaries of right Lung GAS EXCHANGE Carries deoxygenated blood to lungs Aorta 9 Capillaries of left Lung GAS EXCHANGE 3 3 2 4 11 Pulmonary vein Right Atrium 1 Carries oxygenated blood to heart: LA 5 Left Atrium - LA RA - Receives deoxygenated blood 10 from body Receives oxygenated blood from lungs Left Ventricle - LV Pumps oxygenated blood to body Right Ventricle RV - Pumps blood to lungs Inferior vena cava Returns deoxygenated blood from body to heart RA mammalian cardiovascular system Aorta = main artery to body for Systemic Circulation 8 Capillaries of abdominal organs and hind limbs EXCHANGE with body cells

The Mammalian Heart: A Closer Look • A closer look at the mammalian heart

The Mammalian Heart: A Closer Look • A closer look at the mammalian heart provides a better understanding of double circulation. • RIGHT side = deoxygenated blood from body pumped to lungs. • LUNGS = gas exchange. • LEFT side = oxygenated blood from lungs pumped to body. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Pulmonary artery - to lungs Mammalian Heart Right Atrium RA Receives Deoxygented Blood from

Pulmonary artery - to lungs Mammalian Heart Right Atrium RA Receives Deoxygented Blood from body Aorta - systemic circulation Pulmonary veins from lungs to heart Left Atrium LA Receives oxgenated blood from lungs Semilunar valve Atrioventricular valve Right Ventricle RV Pumps to lungs for gas exchange Left Ventricle LV Pumps oxygenated blood to body via aorta

 • The heart contracts and relaxes in a rhythmic cycle called the cardiac

• The heart contracts and relaxes in a rhythmic cycle called the cardiac cycle. • The contraction, or pumping, phase is called systole. • The relaxation, or filling, phase is called diastole. • Blood Pressure = systolic / diastolic Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Cardiac cycle 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1 sec AV

Cardiac cycle 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1 sec AV valves open 1 Atrial and ventricular diastole 0. 4 sec Semilunar valves open 0. 3 sec AV valves closed 3 Ventricular systole; atrial diastole

 • The heart rate, also called the pulse, is the number of beats

• The heart rate, also called the pulse, is the number of beats per minute. • The stroke volume is the amount of blood pumped in a single contraction. • The cardiac output is the volume of blood pumped into the systemic circulation per minute and depends on both the heart rate and stroke volume. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Four valves prevent backflow of blood in the heart: • The atrioventricular (AV) valves

Four valves prevent backflow of blood in the heart: • The atrioventricular (AV) valves separate each atrium and ventricle. • The semilunar valves control blood flow to the aorta and the pulmonary artery. • The “lub-dup” sound of a heart beat is caused by the recoil of blood against the AV valves (lub) then against the semilunar (dup) valves. • Backflow of blood through a defective valve causes a heart murmur. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Maintaining the Heart’s Rhythmic Beat • Some cardiac muscle cells are self-excitable = they

Maintaining the Heart’s Rhythmic Beat • Some cardiac muscle cells are self-excitable = they contract without any signal from the nervous system. • The sinoatrial (SA) node, or pacemaker, sets the rate and timing at which cardiac muscle cells contract. • Impulses from the SA node travel to the atrioventricular (AV) node. At the AV node, the impulses are delayed and then travel to the Purkinje fibers that make the ventricles contract. • Impulses that travel during the cardiac cycle can be recorded as an electrocardiogram (ECG or EKG). The pacemaker is influenced by nerves, hormones, body temperature, and exercise. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Control of heart rhythm 1 Pacemaker generates wave of signals to contract. SA node

Control of heart rhythm 1 Pacemaker generates wave of signals to contract. SA node (pacemaker) ECG 2 Signals are delayed at AV node 3 Signals pass to heart apex. Bundle branches Heart apex 4 Signals spread throughout ventricles. Purkinje Fibers: ventricles contract

Patterns of blood pressure and flow reflect the structure and arrangement of blood vessels

Patterns of blood pressure and flow reflect the structure and arrangement of blood vessels • The physical principles that govern movement of water in plumbing systems also influence the functioning of animal circulatory systems. • The epithelial layer that lines blood vessels is called the endothelium. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Structure of blood vessels Artery Vein SEM 100 µm Basal lamina Endothelium Smooth muscle

Structure of blood vessels Artery Vein SEM 100 µm Basal lamina Endothelium Smooth muscle Connective tissue Valve Endothelium Capillary Smooth muscle Connective tissue Artery Vein Capillary 15 µm Red blood cell Venule LM Arteriole

 • Capillaries have thin walls, the endothelium plus its basement membrane, to facilitate

• Capillaries have thin walls, the endothelium plus its basement membrane, to facilitate the exchange of materials. • Arteries and veins have an endothelium, smooth muscle, and connective tissue. • Arteries have thicker walls than veins to accommodate the high pressure of blood pumped from the heart. • In the thinner-walled veins, blood flows back to the heart mainly as a result of muscle action. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Blood Flow Velocity • Physical laws governing movement of fluids through pipes affect blood

Blood Flow Velocity • Physical laws governing movement of fluids through pipes affect blood flow and blood pressure. • Velocity of blood flow is slowest in the capillary beds, as a result of the high resistance and large total cross-sectional area. • Blood flow in capillaries is necessarily slow for exchange of materials. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Systolic pressure Venae cavae Veins Venules Capillaries Diastolic pressure Arterioles 120 100 80 60

Systolic pressure Venae cavae Veins Venules Capillaries Diastolic pressure Arterioles 120 100 80 60 40 20 0 Arteries 50 40 30 20 10 0 Aorta Velocity (cm/sec) 4, 000 3, 000 2, 000 1, 000 0 Pressure (mm Hg) Area (cm 2) The interrelationship of cross-sectional area of blood vessels, blood flow velocity, and blood pressure. 5, 000

Blood Pressure • Blood pressure is the hydrostatic pressure that blood exerts against the

Blood Pressure • Blood pressure is the hydrostatic pressure that blood exerts against the wall of a vessel. • In rigid vessels blood pressure is maintained; less rigid vessels deform and blood pressure is lost. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Changes in Blood Pressure During the Cardiac Cycle • Systolic pressure is the pressure

Changes in Blood Pressure During the Cardiac Cycle • Systolic pressure is the pressure in the arteries during ventricle contraction /systole; it is the highest pressure in the arteries. • Diastolic pressure is the pressure in the arteries during relaxation /diastole; it is lower than systolic pressure. • A pulse is the rhythmic bulging of artery walls with each heartbeat. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Regulation of Blood Pressure • Blood pressure is determined by cardiac output and peripheral

Regulation of Blood Pressure • Blood pressure is determined by cardiac output and peripheral resistance due to constriction of arterioles. • Vasoconstriction is the contraction of smooth muscle in arteriole walls; it increases blood pressure. • Vasodilation is the relaxation of smooth muscles in the arterioles; it causes blood pressure to fall. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • Vasoconstriction and vasodilation help maintain adequate blood flow as the body’s demands

• Vasoconstriction and vasodilation help maintain adequate blood flow as the body’s demands change. • The peptide endothelin is an important inducer of vasoconstriction. • Blood pressure is generally measured for an artery in the arm at the same height as the heart. • Blood pressure for a healthy 20 year old at rest is 120 mm Hg at systole / 70 mm Hg at diastole. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Question: How do endothelial cells control vasoconstriction? RESULTS Leu Met Ser Endothelin Ser Cys

Question: How do endothelial cells control vasoconstriction? RESULTS Leu Met Ser Endothelin Ser Cys —NH + 3 Asp Lys Glu Cys Val Tyr Phe Cys His Leu Asp Ile Cys Ile Trp —COO– Trp Parent polypeptide 1 53 73 Endothelin 203

Measurement of blood pressure: sphygmomanometer Blood pressure reading: 120/70 Pressure in cuff greater than

Measurement of blood pressure: sphygmomanometer Blood pressure reading: 120/70 Pressure in cuff greater than 120 mm Hg Rubber cuff inflated with air Pressure in cuff drops below 120 mm Hg 120 Pressure in cuff below 70 mm Hg 120 70 Artery closed Sounds audible in stethoscope Sounds stop

 • Fainting is caused by inadequate blood flow to the head. • Animals

• Fainting is caused by inadequate blood flow to the head. • Animals with longer necks require a higher systolic pressure to pump blood a greater distance against gravity. • Blood is moved through veins by smooth muscle contraction, skeletal muscle contraction, and expansion of the vena cava with inhalation. • One-way valves in veins / heart prevent backflow of blood. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Blood flow in veins Direction of blood flow in vein (toward heart) Valve (open)

Blood flow in veins Direction of blood flow in vein (toward heart) Valve (open) Skeletal muscle Valve (closed) Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Capillary Function • Capillaries in major organs are usually filled to capacity. Blood supply

Capillary Function • Capillaries in major organs are usually filled to capacity. Blood supply varies in many other sites. • Two mechanisms regulate distribution of blood in capillary beds: – Contraction of the smooth muscle layer in the wall of an arteriole constricts the vessel. – Precapillary sphincters control flow of blood between arterioles and venules. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Blood flow in capillary beds Precapillary sphincters Thoroughfare channel Capillaries Venule Arteriole (a) Sphincters

Blood flow in capillary beds Precapillary sphincters Thoroughfare channel Capillaries Venule Arteriole (a) Sphincters relaxed Arteriole (b) Sphincters Venule contracted

 • The critical exchange of substances between the blood and interstitial fluid takes

• The critical exchange of substances between the blood and interstitial fluid takes place across the thin endothelial walls of the capillaries. • The difference between blood pressure and osmotic pressure drives fluids out of capillaries at the arteriole end and into capillaries at the venule end. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Net fluid movement in Direction

Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Net fluid movement in Direction of blood flow Blood pressure = hydrostatic pressure Pressure Fluid exchange between capillaries and the interstitial fluid Inward flow Outward flow Osmotic pressure Arterial end of capillary Venous end

Fluid Return by the Lymphatic System • The lymphatic system - returns fluid that

Fluid Return by the Lymphatic System • The lymphatic system - returns fluid that leaks out in the capillary beds … restoring filtered fluid to blood maintains homeostasis. • This system aids in body defense. • Fluid, called lymph, reenters the circulation directly at the venous end of the capillary bed and indirectly through the lymphatic system. • The lymphatic system drains into neck veins. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • Lymph nodes are organs that produce phagocytic white blood cells and filter

• Lymph nodes are organs that produce phagocytic white blood cells and filter lymph an important role in the body’s defense. • Edema is swelling caused by disruptions in the flow of lymph. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Blood Composition and Function • Blood consists of several kinds of blood cells suspended

Blood Composition and Function • Blood consists of several kinds of blood cells suspended in a liquid matrix called plasma. • The cellular elements: red blood cells, white blood cells, and platelets occupy about 45% of the volume of blood. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Composition of mammalian blood Plasma 55% Constituent Major functions Water Solvent for carrying other

Composition of mammalian blood Plasma 55% Constituent Major functions Water Solvent for carrying other substances Cellular elements 45% Cell type Number per µL (mm 3) of blood Erythrocytes (red blood cells) Ions (blood electrolytes) Sodium Potassium Calcium Magnesium Chloride Bicarbonate Osmotic balance, p. H buffering, and regulation of membrane permeability 5– 6 million Transport oxygen and help transport carbon dioxide Separated blood elements Leukocytes Functions 5, 000– 10, 000 (white blood cells) Defense and immunity Plasma proteins Albumin Osmotic balance p. H buffering Fibrinogen Clotting Immunoglobulins (antibodies) Defense Substances transported by blood Nutrients (such as glucose, fatty acids, vitamins) Waste products of metabolism Respiratory gases (O 2 and CO 2) Hormones Lymphocyte Basophil Eosinophil Neutrophil Platelets Monocyte 250, 000– 400, 000 Blood clotting

Plasma • Blood plasma is about 90% water. • Among its solutes are inorganic

Plasma • Blood plasma is about 90% water. • Among its solutes are inorganic salts in the form of dissolved ions, sometimes called electrolytes. • Another important class of solutes is the plasma proteins, which influence blood p. H, osmotic pressure, and viscosity. Various plasma proteins function in lipid transport, immunity, and blood clotting. • Plasma transports nutrients, gases, and cell waste. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Cellular Elements • Suspended in blood plasma are two types of cells: – Red

Cellular Elements • Suspended in blood plasma are two types of cells: – Red blood cells rbc = erythrocytes, transport oxygen. – White blood cells wbc = leukocytes, function in defense. • Platelets are fragments of cells that are involved in blood clotting. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Erythrocytes - Oxygen Transport • Red blood cells, or erythrocytes, are by far the

Erythrocytes - Oxygen Transport • Red blood cells, or erythrocytes, are by far the most numerous blood cells. • They transport oxygen throughout the body. • They contain hemoglobin, the iron-containing protein that transports oxygen. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Leukocytes - Defense • There are five major types of white blood cells, or

Leukocytes - Defense • There are five major types of white blood cells, or leukocytes: monocytes, neutrophils, basophils, eosinophils, and lymphocytes. • They function in defense by phagocytizing bacteria and debris or by producing antibodies. • They are found both in and outside of the circulatory system. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Platelets - Blood Clotting • Platelets are fragments of cells and function in blood

Platelets - Blood Clotting • Platelets are fragments of cells and function in blood clotting. • When the endothelium of a blood vessel is damaged, the clotting mechanism begins. • A cascade of complex reactions converts fibrinogen to fibrin, forming a clot. • A blood clot formed within a blood vessel is called a thrombus and can block blood flow. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Blood clotting Red blood cell Collagen fibers Platelet plug Fibrin clot Platelet releases chemicals

Blood clotting Red blood cell Collagen fibers Platelet plug Fibrin clot Platelet releases chemicals that make nearby platelets sticky Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K) Prothrombin Thrombin Fibrinogen Fibrin 5 µm

Stem Cells and the Replacement of Cellular Elements • The cellular elements of blood

Stem Cells and the Replacement of Cellular Elements • The cellular elements of blood wear out and are replaced constantly throughout a person’s life. • Erythrocytes, leukocytes, and platelets all develop from a common source of stem cells in the red marrow of bones. • The hormone erythropoietin (EPO) stimulates erythrocyte production when oxygen delivery is low. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Differentiation of Blood Cells Stem cells in bone marrow Myeloid stem cells Lymphocytes B

Differentiation of Blood Cells Stem cells in bone marrow Myeloid stem cells Lymphocytes B cells T cells Erythrocytes Neutrophils Platelets Eosinophils Monocytes Basophils

Cardiovascular Disease = Disorders of the Heart and the Blood Vessels • One type

Cardiovascular Disease = Disorders of the Heart and the Blood Vessels • One type of cardiovascular disease, atherosclerosis, is caused by the buildup of plaque deposits within arteries. • A heart attack is the death of cardiac muscle tissue resulting from blockage of one or more coronary arteries. • A stroke is the death of nervous tissue in the brain, usually resulting from rupture or blockage of arteries in the brain /head. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Atherosclerosis Connective tissue Smooth muscle (a) Normal artery Endothelium 50 µm (b) Partly Plaque

Atherosclerosis Connective tissue Smooth muscle (a) Normal artery Endothelium 50 µm (b) Partly Plaque clogged artery 250 µm

Treatment and Diagnosis of Cardiovascular Disease • Cholesterol is a major contributor to atherosclerosis.

Treatment and Diagnosis of Cardiovascular Disease • Cholesterol is a major contributor to atherosclerosis. • Low-density lipoproteins (LDLs) = “bad cholesterol, ” are associated with plaque formation. • High-density lipoproteins (HDLs) = “good cholesterol, ” reduce the deposition of cholesterol. • Hypertension = high blood pressure, promotes atherosclerosis and increases the risk of heart attack and stroke. • Hypertension can be reduced by dietary changes, exercise, and/or medication. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Gas exchange occurs across specialized respiratory surfaces • Gas exchange supplies oxygen for cellular

Gas exchange occurs across specialized respiratory surfaces • Gas exchange supplies oxygen for cellular respiration and disposes of carbon dioxide. Gases diffuse down pressure gradients in the lungs and other organs as a result of differences in partial pressure. • Partial pressure is the pressure exerted by a particular gas in a mixture of gases. A gas diffuses from a region of higher partial pressure to a region of lower partial pressure: H --> L • In the lungs and tissues, O 2 and CO 2 diffuse from where their partial pressures are higher to where they are lower. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Respiratory Media • Animals can use air or water as a source of O

Respiratory Media • Animals can use air or water as a source of O 2, or respiratory medium. • In a given volume, there is less O 2 available in water than in air. • Obtaining O 2 from water requires greater efficiency than air breathing. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Respiratory Surfaces • Animals require large, moist respiratory surfaces for exchange of gases between

Respiratory Surfaces • Animals require large, moist respiratory surfaces for exchange of gases between their cells and the respiratory medium, either air or water. • Gas exchange across respiratory surfaces takes place by diffusion. • Respiratory surfaces vary by animal and can include the outer surface, skin, gills, tracheae, and lungs. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Gills are outfoldings of the body that create a large surface area for gas

Gills are outfoldings of the body that create a large surface area for gas exchange Coelom Gills Parapodium (functions as gill) (a) Marine worm Gills Tube foot (b) Crayfish (c) Sea star

 • Ventilation moves the respiratory medium over the respiratory surface. • Aquatic animals

• Ventilation moves the respiratory medium over the respiratory surface. • Aquatic animals move through water or move water over their gills for ventilation. • Fish gills use a countercurrent exchange system, where blood flows in the opposite direction to water passing over the gills; blood is always less saturated with O 2 than the water it meets… maximizes diffusion. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Structure and function of fish gills Fluid flow through gill filament Oxygen-poor blood Anatomy

Structure and function of fish gills Fluid flow through gill filament Oxygen-poor blood Anatomy of gills Oxygen-rich blood Gill arch Lamella Gill arch Water flow Gill filament organization Blood vessels Operculum Water flow between lamellae Blood flow through capillaries in lamella Countercurrent exchange PO (mm Hg) in water 2 150 120 90 60 30 Gill filaments Net diffusion of O 2 from water to blood 140 110 80 50 20 PO (mm Hg) in blood 2

Tracheal Systems in Insects • The tracheal system of insects consists of tiny branching

Tracheal Systems in Insects • The tracheal system of insects consists of tiny branching tubes that penetrate the body. • The tracheal tubes supply O 2 directly to body cells. • The respiratory and circulatory systems are separate. • Larger insects must ventilate their tracheal system to meet O 2 demands. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Tracheal systems Air sacs Tracheae = air tubes External opening: spiracles Tracheoles Body cell

Tracheal systems Air sacs Tracheae = air tubes External opening: spiracles Tracheoles Body cell Mitochondria Muscle fiber Air sac Tracheole Trachea Air external openings spiracles Body wall 2. 5 µm

Lungs = Infoldings of the body surface • The circulatory system (open or closed)

Lungs = Infoldings of the body surface • The circulatory system (open or closed) transports gases between the lungs and the rest of the body. • The size and complexity of lungs correlate with an animal’s metabolic rate. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Mammalian Respiratory Systems: A Closer Look • A system of branching ducts / air

Mammalian Respiratory Systems: A Closer Look • A system of branching ducts / air tubes conveys air to the lungs. • Air inhaled through the nostrils --> pharynx -> larynx --> trachea --> bronchioles --> alveoli = site of gas exchange. • Exhaled air passes over the vocal cords to create sounds. • Alveoli are wrapped by capillaries for GAS EXCHANGE. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings -

Mammalian Respiratory System Branch of pulmonary vein (oxygen-rich blood) Branch of pulmonary artery (oxygen-poor

Mammalian Respiratory System Branch of pulmonary vein (oxygen-rich blood) Branch of pulmonary artery (oxygen-poor blood) Terminal bronchiole Nasal cavity Pharynx Larynx (Esophagus) Alveoli Left lung Trachea Right lung Bronchus Bronchiole Diaphragm Heart SEM 50 µm Colorized SEM 50 µm

Breathing Ventilates the Lungs by Inhalation and Exhalation of Air • Amphibians, such as

Breathing Ventilates the Lungs by Inhalation and Exhalation of Air • Amphibians, such as a frog, ventilates its lungs by positive pressure breathing, which forces air down the trachea. • Mammals ventilate by negative pressure breathing, which pulls air into the lungs by varying volume / air pressure. Lung volume increases as the rib muscles and diaphragm contract. • The tidal volume is the volume of air inhaled with each breath. The maximum tidal volume is the vital capacity. After exhalation, residual volume of air remains in the lungs. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Negative pressure breathing: H --> L Rib cage expands as rib muscles contract Air

Negative pressure breathing: H --> L Rib cage expands as rib muscles contract Air inhaled Rib cage gets smaller as rib muscles relax Air exhaled Lung Diaphragm INHALATION EXHALATION Diaphragm contracts (moves down) Diaphragm relaxes (moves up) Volume increases Pressure decreases Air rushes in Volume decreases Pressure increases Air rushes out

How a Bird Breathes • Birds have eight or nine air sacs that function

How a Bird Breathes • Birds have eight or nine air sacs that function as bellows that keep air flowing through the lungs. • Air passes through the lungs in one direction only. • Every exhalation completely renews the air in the lungs. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

The Avian Respiratory System Air Anterior air sacs Posterior air sacs Air Trachea Lungs

The Avian Respiratory System Air Anterior air sacs Posterior air sacs Air Trachea Lungs Air tubes (parabronchi) in lung INHALATION Air sacs fill EXHALATION Air sacs empty; Lungs Fill 1 mm

Control of Breathing in Humans • In humans, the main breathing control centers are

Control of Breathing in Humans • In humans, the main breathing control centers are in two regions of the brain, the medulla oblongata and the pons. • The medulla regulates the rate and depth of breathing in response to p. H changes - CO 2 levels in the cerebrospinal fluid. • The medulla adjusts breathing rate and depth to match metabolic demands. • The pons regulates the tempo. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 • Sensors in the aorta and carotid arteries monitor O 2 and CO

• Sensors in the aorta and carotid arteries monitor O 2 and CO 2 concentrations in the blood. • These sensors exert secondary control over breathing. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Automatic control of breathing Cerebrospinal fluid Pons Breathing control centers Medulla oblongata Carotid arteries

Automatic control of breathing Cerebrospinal fluid Pons Breathing control centers Medulla oblongata Carotid arteries Aorta Diaphragm Rib muscles

Adaptations for gas exchange include pigments that bind and transport gases • The metabolic

Adaptations for gas exchange include pigments that bind and transport gases • The metabolic demands of many organisms require that the blood transport large quantities of O 2 and CO 2 • Blood arriving in the lungs has a low partial pressure of O 2 and a high partial pressure of CO 2 relative to air in the alveoli. • In the alveoli, O 2 diffuses into the blood and CO 2 diffuses into the air. • In tissue capillaries, partial pressure gradients favor diffusion of O 2 into the interstitial fluids and CO 2 into the blood. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Loading and unloading of respiratory gases Alveolus PCO 2 = 40 mm Hg PO

Loading and unloading of respiratory gases Alveolus PCO 2 = 40 mm Hg PO 2 = 100 mm Hg PO 2 = 40 PO 2 = 100 PCO 2 = 46 Circulatory system PO 2 = 40 PCO 2 = 40 Circulatory system PO 2 = 100 PCO 2 = 46 PO 2 ≤ 40 mm Hg PCO 2 ≥ 46 mm Hg Body tissue (a) Oxygen PCO 2 = 40 Body tissue (b) Carbon dioxide

Respiratory Pigments • Respiratory pigments = proteins that transport oxygen, greatly increase the amount

Respiratory Pigments • Respiratory pigments = proteins that transport oxygen, greatly increase the amount of oxygen that blood can carry. • Arthropods and many molluscs have hemocyanin with copper as the oxygen-binding component. • Most vertebrates and some invertebrates use hemoglobin with iron = oxygen-binding component contained within erythrocytes. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Hemoglobin • A single hemoglobin molecule can carry four molecules of O 2 •

Hemoglobin • A single hemoglobin molecule can carry four molecules of O 2 • The hemoglobin dissociation curve shows that a small change in the partial pressure of oxygen can result in a large change in delivery of O 2 • CO 2 produced during cellular respiration lowers blood p. H and decreases the affinity of hemoglobin for O 2 • This is called the Bohr shift. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

 Chains Iron Heme Chains Hemoglobin

Chains Iron Heme Chains Hemoglobin

100 O 2 saturation of hemoglobin (%) Dissociation curves for hemoglobin at 37ºC O

100 O 2 saturation of hemoglobin (%) Dissociation curves for hemoglobin at 37ºC O 2 unloaded to tissues at rest 80 O 2 unloaded to tissues during exercise 60 40 20 0 0 20 Tissues during exercise 40 60 80 Tissues at rest 100 Lungs PO 2 (mm Hg) (a) PO 2 and hemoglobin dissociation at p. H 7. 4 O 2 saturation of hemoglobin (%) 100 p. H 7. 4 80 p. H 7. 2 Hemoglobin retains less O 2 at lower p. H 60 40 (higher CO 2 concentration) 20 0 0 20 40 60 80 100 PO 2 (mm Hg) (b) p. H and hemoglobin dissociation

Carbon Dioxide Transport • Hemoglobin also helps transport CO 2 and assists in buffering.

Carbon Dioxide Transport • Hemoglobin also helps transport CO 2 and assists in buffering. • CO 2 from respiring cells diffuses into the blood and is transported either in blood plasma, bound to hemoglobin, or as bicarbonate ions = HCO 3–. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Body tissue CO transport CO 2 produced from tissues 2 Carbon dioxide transport in

Body tissue CO transport CO 2 produced from tissues 2 Carbon dioxide transport in the blood CO Interstitial fluid 2 Plasma within capillary CO 2 Capillary wall CO 2 H 2 O Red H 2 CO 3 Hb blood Carbonic acid cell HCO 3– + Bicarbonate Hemoglobin picks up CO 2 and H+ H+ HCO 3–To lungs CO 2 transport to lungs HCO 3– + H+ H 2 CO 3 H 2 O Hb Hemoglobin releases CO 2 and H+ CO 2 Alveolar space in lung

Elite Animal Athletes • Migratory and diving mammals have evolutionary adaptations that allow them

Elite Animal Athletes • Migratory and diving mammals have evolutionary adaptations that allow them to perform extraordinary feats. • The extreme O 2 consumption of the antelope-like pronghorn underlies its ability to run at high speed over long distances. • Deep-diving air breathers stockpile O 2 and deplete it slowly. • Weddell seals have a high blood to body volume ratio and can store oxygen in their muscles in myoglobin proteins. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

Review Inhaled air Alveolar epithelial cells Exhaled air Lungs - Alveolar Air Spaces GAS

Review Inhaled air Alveolar epithelial cells Exhaled air Lungs - Alveolar Air Spaces GAS EXCHANGE CO 2 CO Pulmonary arteries O 2 2 O 2 Alveolar capillaries of lung Pulmonary veins Systemic arteries Heart CO Systemic capillaries 2 CO 2 O 2 Body tissue - GAS EXCHANGE

You should now be able to: 1. Compare and contrast open and closed circulatory

You should now be able to: 1. Compare and contrast open and closed circulatory systems. 2. Compare and contrast the circulatory systems of fish, amphibians, reptiles, and mammals or birds. 3. Distinguish between pulmonary and systemic circuits and explain the function of each. 4. Trace the path of a red blood cell through the human heart, pulmonary circuit, and systemic circuit. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

5. Define cardiac cycle and explain the role of the sinoatrial node. 6. Relate

5. Define cardiac cycle and explain the role of the sinoatrial node. 6. Relate the structures of capillaries, arteries, and veins to their function. 7. Define blood pressure and cardiac output and describe two factors that influence each. 8. Explain how osmotic pressure and hydrostatic pressure regulate the exchange of fluid and solutes across the capillary walls. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

9. Describe the role played by the lymphatic system in relation to the circulatory

9. Describe the role played by the lymphatic system in relation to the circulatory system. 10. Describe the function of erythrocytes, leukocytes, platelets, fibrin. 11. Distinguish between a heart attack and stroke. 12. Discuss the advantages and disadvantages of water and of air as respiratory media. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings

13. For humans, describe the exchange of gases in the lungs and in tissues.

13. For humans, describe the exchange of gases in the lungs and in tissues. 14. Draw and explain the hemoglobin-oxygen dissociation curve. Copyright © 2008 Pearson Education, Inc. , publishing as Pearson Benjamin Cummings