Chapter 42 Circulation and Gas Exchange Power Point

  • Slides: 108
Download presentation
Chapter 42 Circulation and Gas Exchange Power. Point Lectures for Biology, Seventh Edition Neil

Chapter 42 Circulation and Gas Exchange Power. Point Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Overview: Trading with the Environment • Every organism must exchange materials with

• Overview: Trading with the Environment • Every organism must exchange materials with its environment – And this exchange ultimately occurs at the cellular level Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In unicellular organisms – These exchanges occur directly with the environment •

• In unicellular organisms – These exchanges occur directly with the environment • For most of the cells making up multicellular organisms – Direct exchange with the environment is not possible Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The feathery gills projecting from a salmon – Are an example of

• The feathery gills projecting from a salmon – Are an example of a specialized exchange system found in animals Figure 42. 1 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Concept 42. 1: Circulatory systems reflect phylogeny • Transport systems – Functionally

• Concept 42. 1: Circulatory systems reflect phylogeny • Transport systems – Functionally connect the organs of exchange with the body cells Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Most complex animals have internal transport systems – That circulate fluid, providing

• Most complex animals have internal transport systems – That circulate fluid, providing a lifeline between the aqueous environment of living cells and the exchange organs, such as lungs, that exchange chemicals with the outside environment Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Invertebrate Circulation • The wide range of invertebrate body size and form – Is

Invertebrate Circulation • The wide range of invertebrate body size and form – Is paralleled by a great diversity in circulatory systems Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Gastrovascular Cavities • Simple animals, such as cnidarians – Have a body wall only

Gastrovascular Cavities • Simple animals, such as cnidarians – Have a body wall only two cells thick that encloses a gastrovascular cavity • The gastrovascular cavity – Functions in both digestion and distribution of substances throughout the body Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Some cnidarians, such as jellies – Have elaborate gastrovascular cavities Circular canal

• Some cnidarians, such as jellies – Have elaborate gastrovascular cavities Circular canal Mouth Radial canal 5 cm Figure 42. 2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Open and Closed Circulatory Systems • More complex animals – Have one of two

Open and Closed Circulatory Systems • More complex animals – Have one of two types of circulatory systems: open or closed • Both of these types of systems have three basic components – A circulatory fluid (blood) – A set of tubes (blood vessels) – A muscular pump (the heart) Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In insects, other arthropods, and most molluscs – Blood bathes the organs

• In insects, other arthropods, and most molluscs – Blood bathes the organs directly in an open circulatory system Heart Hemolymph in sinuses surrounding ograns Anterior vessel Figure 42. 3 a Lateral vessels Ostia Tubular heart (a) An open circulatory system Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In a closed circulatory system – Blood is confined to vessels and

• In a closed circulatory system – Blood is confined to vessels and is distinct from the interstitial fluid Heart Interstitial fluid Small branch vessels in each organ Dorsal vessel (main heart) Auxiliary hearts Figure 42. 3 b Ventral vessels (b) A closed circulatory system Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Closed systems – Are more efficient at transporting circulatory fluids to tissues

• Closed systems – Are more efficient at transporting circulatory fluids to tissues and cells Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Survey of Vertebrate Circulation • Humans and other vertebrates have a closed circulatory system

Survey of Vertebrate Circulation • Humans and other vertebrates have a closed circulatory system – Often called the cardiovascular system • Blood flows in a closed cardiovascular system – Consisting of blood vessels and a two- to fourchambered heart Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Arteries carry blood to capillaries – The sites of chemical exchange between

• Arteries carry blood to capillaries – The sites of chemical exchange between the blood and interstitial fluid • Veins – Return blood from capillaries to the heart Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Fishes • A fish heart has two main chambers – One ventricle and one

Fishes • A fish heart has two main chambers – One ventricle and one atrium • Blood pumped from the ventricle – Travels to the gills, where it picks up O 2 and disposes of CO 2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Amphibians • Frogs and other amphibians – Have a three-chambered heart, with two atria

Amphibians • Frogs and other amphibians – Have a three-chambered heart, with two atria and one ventricle • The ventricle pumps blood into a forked artery – That splits the ventricle’s output into the pulmocutaneous circuit and the systemic circuit Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Reptiles (Except Birds) • Reptiles have double circulation – With a pulmonary circuit (lungs)

Reptiles (Except Birds) • Reptiles have double circulation – With a pulmonary circuit (lungs) and a systemic circuit • Turtles, snakes, and lizards – Have a three-chambered heart Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Mammals and Birds • In all mammals and birds – The ventricle is completely

Mammals and Birds • In all mammals and birds – The ventricle is completely divided into separate right and left chambers • The left side of the heart pumps and receives only oxygen-rich blood – While the right side receives and pumps only oxygen-poor blood Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • A powerful four-chambered heart – Was an essential adaptation of the endothermic

• A powerful four-chambered heart – Was an essential adaptation of the endothermic way of life characteristic of mammals and birds Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Vertebrate circulatory systems AMPHIBIANS REPTILES (EXCEPT BIRDS) MAMMALS AND BIRDS Lung and

• Vertebrate circulatory systems AMPHIBIANS REPTILES (EXCEPT BIRDS) MAMMALS AND BIRDS Lung and skin capillaries Lung capillaries FISHES Gill capillaries Artery Pulmocutaneous circuit Gill circulation Heart: ventricle (V) A Atrium (A) Systemic Vein circulation Systemic capillaries Right systemic aorta Pulmonary circuit A A V Right V Left Right Systemic circuit Systemic capillaries Figure 42. 4 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Pulmonary circuit Left Systemic V aorta Left A Systemic capillaries A V Right A V Left Systemic circuit Systemic capillaries

 • Concept 42. 2: Double circulation in mammals depends on the anatomy and

• Concept 42. 2: Double circulation in mammals depends on the anatomy and pumping cycle of the heart • The structure and function of the human circulatory system – Can serve as a model for exploring mammalian circulation in general Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Mammalian Circulation: The Pathway • Heart valves – Dictate a one-way flow of blood

Mammalian Circulation: The Pathway • Heart valves – Dictate a one-way flow of blood through the heart Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Blood begins its flow – With the right ventricle pumping blood to

• Blood begins its flow – With the right ventricle pumping blood to the lungs • In the lungs – The blood loads O 2 and unloads CO 2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Oxygen-rich blood from the lungs – Enters the heart at the left

• Oxygen-rich blood from the lungs – Enters the heart at the left atrium and is pumped to the body tissues by the left ventricle • Blood returns to the heart – Through the right atrium Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The mammalian cardiovascular system 7 Capillaries of head and forelimbs Anterior vena

• The mammalian cardiovascular system 7 Capillaries of head and forelimbs Anterior vena cava Pulmonary artery Aorta Pulmonary artery 9 6 Capillaries of right lung Capillaries of left lung 2 4 3 Pulmonary vein Right atrium 3 11 5 1 Left atrium Pulmonary vein 10 Left ventricle Right ventricle Aorta Posterior vena cava 8 Figure 42. 5 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Capillaries of abdominal organs and hind limbs

The Mammalian Heart: A Closer Look • A closer look at the mammalian heart

The Mammalian Heart: A Closer Look • A closer look at the mammalian heart – Provides a better understanding of how double circulation works Pulmonary artery Aorta Pulmonary artery Anterior vena cava Left atrium Right atrium Pulmonary veins Semilunar valve Atrioventricular valve Posterior vena cava Figure 42. 6 Right ventricle Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Left ventricle

 • The heart contracts and relaxes – In a rhythmic cycle called the

• The heart contracts and relaxes – In a rhythmic cycle called the cardiac cycle • The contraction, or pumping, phase of the cycle – Is called systole • The relaxation, or filling, phase of the cycle – Is called diastole Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The cardiac cycle 2 Atrial systole; ventricular diastole Semilunar valves closed 0.

• The cardiac cycle 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1 sec Semilunar valves open 0. 3 sec 0. 4 sec AV valves open 1 Atrial and ventricular diastole Figure 42. 7 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings AV valves closed 3 Ventricular systole; atrial diastole

 • The heart rate, also called the pulse – Is the number of

• The heart rate, also called the pulse – Is the number of beats per minute • The cardiac output – Is the volume of blood pumped into the systemic circulation per minute Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Maintaining the Heart’s Rhythmic Beat • Some cardiac muscle cells are self-excitable – Meaning

Maintaining the Heart’s Rhythmic Beat • Some cardiac muscle cells are self-excitable – Meaning they contract without any signal from the nervous system Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • A region of the heart called the sinoatrial (SA) node, or pacemaker

• A region of the heart called the sinoatrial (SA) node, or pacemaker – Sets the rate and timing at which all cardiac muscle cells contract • Impulses from the SA node – Travel to the atrioventricular (AV) node • At the AV node, the impulses are delayed – And then travel to the Purkinje fibers that make the ventricles contract Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The impulses that travel during the cardiac cycle – Can be recorded

• The impulses that travel during the cardiac cycle – Can be recorded as an electrocardiogram (ECG or EKG) Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The control of heart rhythm 1 Pacemaker generates wave of signals to

• The control of heart rhythm 1 Pacemaker generates wave of signals to contract. SA node (pacemaker) 2 Signals are delayed 3 Signals pass at AV node. to heart apex. 4 Signals spread Throughout ventricles. Bundle branches AV node Heart apex ECG Figure 42. 8 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Purkinje fibers

 • The pacemaker is influenced by – Nerves, hormones, body temperature, and exercise

• The pacemaker is influenced by – Nerves, hormones, body temperature, and exercise Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Concept 42. 3: Physical principles govern blood circulation • The same physical

• Concept 42. 3: Physical principles govern blood circulation • The same physical principles that govern the movement of water in plumbing systems – Also influence the functioning of animal circulatory systems Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Blood Vessel Structure and Function • The “infrastructure” of the circulatory system – Is

Blood Vessel Structure and Function • The “infrastructure” of the circulatory system – Is its network of blood vessels Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • All blood vessels – Are built of similar tissues – Have three

• All blood vessels – Are built of similar tissues – Have three similar layers Artery Vein Endothelium Connective tissue 100 µm Valve Endothelium Smooth muscle Basement membrane Endothelium Capillary Smooth muscle Connective tissue Artery Figure 42. 9 Vein Arteriole Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Venule

 • Structural differences in arteries, veins, and capillaries – Correlate with their different

• Structural differences in arteries, veins, and capillaries – Correlate with their different functions • Arteries have thicker walls – To accommodate the high pressure of blood pumped from the heart Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In the thinner-walled veins – Blood flows back to the heart mainly

• In the thinner-walled veins – Blood flows back to the heart mainly as a result of muscle action Direction of blood flow in vein (toward heart) Valve (open) Skeletal muscle Valve (closed) Figure 42. 10 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Blood Flow Velocity • Physical laws governing the movement of fluids through pipes –

Blood Flow Velocity • Physical laws governing the movement of fluids through pipes – Influence blood flow and blood pressure Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The velocity of blood flow varies in the circulatory system Systolic pressure

• The velocity of blood flow varies in the circulatory system Systolic pressure Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Veins Venules Venae cavae Figure 42. 11 Arterioles Diastolic pressure Capillaries 120 100 80 60 40 20 0 Arteries Velocity (cm/sec) 50 40 30 20 10 0 Aorta Area (cm 2) 5, 000 4, 000 3, 000 2, 000 1, 000 0 Pressure (mm Hg) – And is slowest in the capillary beds as a result of the high resistance and large total cross-sectional area

Blood Pressure • Blood pressure – Is the hydrostatic pressure that blood exerts against

Blood Pressure • Blood pressure – Is the hydrostatic pressure that blood exerts against the wall of a vessel Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Systolic pressure – Is the pressure in the arteries during ventricular systole

• Systolic pressure – Is the pressure in the arteries during ventricular systole – Is the highest pressure in the arteries • Diastolic pressure – Is the pressure in the arteries during diastole – Is lower than systolic pressure Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Blood pressure – Can be easily measured in humans 1 A typical

• Blood pressure – Can be easily measured in humans 1 A typical blood pressure reading for a 20 -year-old is 120/70. The units for these numbers are mm of mercury (Hg); a blood pressure of 120 is a force that can support a column of mercury 120 mm high. 4 The cuff is loosened further until the blood flows freely through the artery and the sounds below the cuff disappear. The pressure at this point is the diastolic pressure remaining in the artery when the heart is relaxed. Blood pressure reading: 120/70 Pressure in cuff above 120 Rubber cuff inflated with air 120 Pressure in cuff below 70 120 70 Sounds audible in stethoscope Artery closed 2 A sphygmomanometer, an inflatable cuff attached to a pressure gauge, measures blood pressure in an artery. The cuff is wrapped around the upper arm and inflated until the pressure closes the artery, so that no blood flows past the cuff. When this occurs, the pressure exerted by the cuff exceeds the pressure in the artery. Figure 42. 12 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 3 A stethoscope is used to listen for sounds of blood flow below the cuff. If the artery is closed, there is no pulse below the cuff. The cuff is gradually deflated until blood begins to flow into the forearm, and sounds from blood pulsing into the artery below the cuff can be heard with the stethoscope. This occurs when the blood pressure is greater than the pressure exerted by the cuff. The pressure at this point is the systolic pressure. Sounds stop

 • Blood pressure is determined partly by cardiac output – And partly by

• Blood pressure is determined partly by cardiac output – And partly by peripheral resistance due to variable constriction of the arterioles Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Capillary Function • Capillaries in major organs are usually filled to capacity – But

Capillary Function • Capillaries in major organs are usually filled to capacity – But in many other sites, the blood supply varies Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Two mechanisms – Regulate the distribution of blood in capillary beds •

• Two mechanisms – Regulate the distribution of blood in capillary beds • In one mechanism – Contraction of the smooth muscle layer in the wall of an arteriole constricts the vessel Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In a second mechanism – Precapillary sphincters control the flow of blood

• In a second mechanism – Precapillary sphincters control the flow of blood between arterioles and venules Precapillary sphincters (a) Sphincters relaxed Thoroughfare channel Arteriole Venule Capillaries Arteriole Venule (b) Sphincters contracted (c) Capillaries and larger vessels (SEM) Figure 42. 13 a–c Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 20 m

 • The critical exchange of substances between the blood and interstitial fluid –

• The critical exchange of substances between the blood and interstitial fluid – Takes place across the thin endothelial walls of the capillaries Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The difference between blood pressure and osmotic pressure – Drives fluids out

• The difference between blood pressure and osmotic pressure – Drives fluids out of capillaries at the arteriole end and into capillaries at the venule end Tissue cell Capillary Red blood cell INTERSTITIAL FLUID Net fluid movement out Net fluid movement in 15 m Direction of blood flow Blood pressure Osmotic pressure Inward flow Pressure At the arterial end of a capillary, blood pressure is greater than osmotic pressure, and fluid flows out of the capillary into the interstitial fluid. At the venule end of a capillary, blood pressure is less than osmotic pressure, and fluid flows from the interstitial fluid into the capillary. Outward flow Figure 42. 14 Arterial end of capillary Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Venule end

Fluid Return by the Lymphatic System • The lymphatic system – Returns fluid to

Fluid Return by the Lymphatic System • The lymphatic system – Returns fluid to the body from the capillary beds – Aids in body defense Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Fluid reenters the circulation – Directly at the venous end of the

• Fluid reenters the circulation – Directly at the venous end of the capillary bed and indirectly through the lymphatic system Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Concept 42. 4: Blood is a connective tissue with cells suspended in

• Concept 42. 4: Blood is a connective tissue with cells suspended in plasma • Blood in the circulatory systems of vertebrates – Is a specialized connective tissue Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Blood Composition and Function • Blood consists of several kinds of cells – Suspended

Blood Composition and Function • Blood consists of several kinds of cells – Suspended in a liquid matrix called plasma • The cellular elements – Occupy about 45% of the volume of blood Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Plasma • Blood plasma is about 90% water • Among its many solutes are

Plasma • Blood plasma is about 90% water • Among its many solutes are – Inorganic salts in the form of dissolved ions, sometimes referred to as electrolytes Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The composition of mammalian plasma Plasma 55% Constituent Major functions Water Solvent

• The composition of mammalian plasma Plasma 55% Constituent Major functions Water Solvent for carrying other substances Icons (blood electrolytes Sodium Potassium Calcium Magnesium Chloride Bicarbonate Plasma proteins Albumin Fibringen Immunoglobulins (antibodies) Osmotic balance p. H buffering, and regulation of membrane permeability Separated blood elements Osmotic balance, p. H buffering Clotting Defense Substances transported by blood Nutrients (such as glucose, fatty acids, vitamins) Waste products of metabolism Respiratory gases (O 2 and CO 2) Hormones Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 42. 15

 • Another important class of solutes is the plasma proteins – Which influence

• Another important class of solutes is the plasma proteins – Which influence blood p. H, osmotic pressure, and viscosity • Various types of plasma proteins – Function in lipid transport, immunity, and blood clotting Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Cellular Elements • Suspended in blood plasma are two classes of cells – Red

Cellular Elements • Suspended in blood plasma are two classes of cells – Red blood cells, which transport oxygen – White blood cells, which function in defense • A third cellular element, platelets – Are fragments of cells that are involved in clotting Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The cellular elements of mammalian blood Cellular elements 45% Cell type Separated

• The cellular elements of mammalian blood Cellular elements 45% Cell type Separated blood elements Number per L (mm 3) of blood Functions Erythrocytes (red blood cells) 5– 6 million Transport oxygen and help transport carbon dioxide Leukocytes (white blood cells) 5, 000– 10, 000 Defense and immunity Lymphocyte Basophil Eosinophil Neutrophil Platelets Figure 42. 15 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Monocyte 250, 000 400, 000 Blood clotting

Erythrocytes • Red blood cells, or erythrocytes – Are by far the most numerous

Erythrocytes • Red blood cells, or erythrocytes – Are by far the most numerous blood cells – Transport oxygen throughout the body Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Leukocytes • The blood contains five major types of white blood cells, or leukocytes

Leukocytes • The blood contains five major types of white blood cells, or leukocytes – Monocytes, neutrophils, basophils, eosinophils, and lymphocytes, which function in defense by phagocytizing bacteria and debris or by producing antibodies Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Platelets • Platelets function in blood clotting Copyright © 2005 Pearson Education, Inc. publishing

Platelets • Platelets function in blood clotting Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Stem Cells and the Replacement of Cellular Elements • The cellular elements of blood

Stem Cells and the Replacement of Cellular Elements • The cellular elements of blood wear out – And are replaced constantly throughout a person’s life Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Erythrocytes, leukocytes, and platelets all develop from a common source – A

• Erythrocytes, leukocytes, and platelets all develop from a common source – A single population of cells called pluripotent stem cells in the red marrow of bones Pluripotent stem cells (in bone marrow) Lymphoid stem cells Myeloid stem cells Basophils B cells T cells Lymphocytes Eosinophils Neutrophils Erythrocytes Figure 42. 16 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Platelets Monocytes

Blood Clotting • When the endothelium of a blood vessel is damaged – The

Blood Clotting • When the endothelium of a blood vessel is damaged – The clotting mechanism begins Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • A cascade of complex reactions – Converts fibrinogen to fibrin, forming a

• A cascade of complex reactions – Converts fibrinogen to fibrin, forming a clot 1 The clotting process begins when the endothelium of a vessel is damaged, exposing connective tissue in the vessel wall to blood. Platelets adhere to collagen fibers in the connective tissue and release a substance that makes nearby platelets sticky. 2 The platelets form a plug that provides emergency protection against blood loss. Collagen fibers Platelet plug Platelet releases chemicals that make nearby platelets sticky 3 This seal is reinforced by a clot of fibrin when vessel damage is severe. Fibrin is formed via a multistep process: Clotting factors released from the clumped platelets or damaged cells mix with clotting factors in the plasma, forming an activation cascade that converts a plasma protein called prothrombin to its active form, thrombin. Thrombin itself is an enzyme that catalyzes the final step of the clotting process, the conversion of fibrinogen to fibrin. The threads of fibrin become interwoven into a patch (see colorized SEM). Fibrin clot Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K) Prothrombin Figure 42. 17 Thrombin Fibrinogen Fibrin Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 5 µm Red blood cell

Cardiovascular Disease • Cardiovascular diseases – Are disorders of the heart and the blood

Cardiovascular Disease • Cardiovascular diseases – Are disorders of the heart and the blood vessels – Account for more than half the deaths in the United States Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • One type of cardiovascular disease, atherosclerosis – Is caused by the buildup

• One type of cardiovascular disease, atherosclerosis – Is caused by the buildup of cholesterol within arteries Connective tissue (a) Normal artery Smooth muscle Plaque Endothelium 50 µm (b) Partly clogged artery Figure 42. 18 a, b Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 250 µm

 • Hypertension, or high blood pressure – Promotes atherosclerosis and increases the risk

• Hypertension, or high blood pressure – Promotes atherosclerosis and increases the risk of heart attack and stroke • A heart attack – Is the death of cardiac muscle tissue resulting from blockage of one or more coronary arteries • A stroke – Is the death of nervous tissue in the brain, usually resulting from rupture or blockage of arteries in the head Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Concept 42. 5: Gas exchange occurs across specialized respiratory surfaces • Gas

• Concept 42. 5: Gas exchange occurs across specialized respiratory surfaces • Gas exchange – Supplies oxygen for cellular respiration and disposes of carbon dioxide Respiratory medium (air of water) O 2 CO 2 Respiratory surface Organismal level Circulatory system Cellular level Energy-rich molecules from food Cellular respiration Figure 42. 19 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings ATP

 • Animals require large, moist respiratory surfaces for the adequate diffusion of respiratory

• Animals require large, moist respiratory surfaces for the adequate diffusion of respiratory gases – Between their cells and the respiratory medium, either air or water Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Gills in Aquatic Animals • Gills are outfoldings of the body surface – Specialized

Gills in Aquatic Animals • Gills are outfoldings of the body surface – Specialized for gas exchange Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In some invertebrates – The gills have a simple shape and are

• In some invertebrates – The gills have a simple shape and are distributed over much of the body (a) Sea star. The gills of a sea star are simple tubular projections of the skin. The hollow core of each gill is an extension of the coelom (body cavity). Gas exchange occurs by diffusion across the gill surfaces, and fluid in the coelom circulates in and out of the gills, aiding gas transport. The surfaces of a sea star’s tube feet also function in gas exchange. Gills Coelom Figure 42. 20 a Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Tube foot

 • Many segmented worms have flaplike gills – That extend from each segment

• Many segmented worms have flaplike gills – That extend from each segment of their body (b) Marine worm. Many polychaetes (marine worms of the phylum Annelida) have a pair of flattened appendages called parapodia on each body segment. The parapodia serve as gills and also function in crawling and swimming. Parapodia Figure 42. 20 b Gill Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The gills of clams, crayfish, and many other animals – Are restricted

• The gills of clams, crayfish, and many other animals – Are restricted to a local body region (c) Scallop. The gills of a scallop are long, flattened plates that project from the main body mass inside the hard shell. Cilia on the gills circulate water around the gill surfaces. (d) Crayfish and other crustaceans have long, feathery gills covered by the exoskeleton. Specialized body appendages drive water over the gill surfaces. Gills Figure 42. 20 c, d Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • The effectiveness of gas exchange in some gills, including those of fishes

• The effectiveness of gas exchange in some gills, including those of fishes – Is increased by ventilation and countercurrent flow of blood and water Oxygen-poor blood Gill arch Blood vessel Oxygen-rich blood Lamella % % 15 90 % Operculum 5% 30 60 % 0% 10 Water flow % 70 % 40 Figure 42. 21 Water flow over lamellae showing % O 2 Gill filaments Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings O 2 Blood flow through capillaries in lamellae showing % O 2 Countercurrent exchange

Tracheal Systems in Insects • The tracheal system of insects – Consists of tiny

Tracheal Systems in Insects • The tracheal system of insects – Consists of tiny branching tubes that penetrate the body Air sacs Tracheae Spiracle (a) The respiratory system of an insect consists of branched internal tubes that deliver air directly to body cells. Rings of chitin reinforce the largest tubes, called tracheae, keeping them from collapsing. Enlarged portions of tracheae form air sacs near organs that require a large supply of oxygen. Air enters the tracheae through openings called spiracles on the insect’s body surface and passes into smaller tubes called tracheoles. The tracheoles are closed and contain fluid (blue-gray). When the animal is active and is using more O 2, most of the fluid is withdrawn into the body. This increases the surface area of air in contact with cells. Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Figure 42. 22 a

 • The tracheal tubes – Supply O 2 directly to body cells Body

• The tracheal tubes – Supply O 2 directly to body cells Body cell Air sac Tracheole Trachea Air Tracheoles Body wall Mitochondria Myofibrils (b) This micrograph shows cross sections of tracheoles in a tiny piece of insect flight muscle (TEM). Each of the numerous mitochondria in the muscle cells lies within about 5 µm of a tracheole. Figure 42. 22 b Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 2. 5 µm

Lungs • Spiders, land snails, and most terrestrial vertebrates – Have internal lungs Copyright

Lungs • Spiders, land snails, and most terrestrial vertebrates – Have internal lungs Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Mammalian Respiratory Systems: A Closer Look • A system of branching ducts – Conveys

Mammalian Respiratory Systems: A Closer Look • A system of branching ducts – Conveys air to the lungs Nasal cavity Pharynx Branch from the pulmonary artery (oxygen-poor blood) Branch from the pulmonary vein (oxygen-rich blood) Terminal bronchiole Left lung Alveoli 50 µm Larynx Esophagus Trachea 50 µm Right lung Bronchus Bronchiole Diaphragm SEM Heart Figure 42. 23 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Colorized SEM

 • In mammals, air inhaled through the nostrils – Passes through the pharynx

• In mammals, air inhaled through the nostrils – Passes through the pharynx into the trachea, bronchioles, and dead-end alveoli, where gas exchange occurs Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Concept 42. 6: Breathing ventilates the lungs • The process that ventilates

• Concept 42. 6: Breathing ventilates the lungs • The process that ventilates the lungs is breathing – The alternate inhalation and exhalation of air Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

How an Amphibian Breathes • An amphibian such as a frog – Ventilates its

How an Amphibian Breathes • An amphibian such as a frog – Ventilates its lungs by positive pressure breathing, which forces air down the trachea Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

How a Mammal Breathes • Mammals ventilate their lungs – By negative pressure breathing,

How a Mammal Breathes • Mammals ventilate their lungs – By negative pressure breathing, which pulls air into the lungs Rib cage expands as rib muscles contract Air inhaled Rib cage gets smaller as rib muscles relax Air exhaled Lung Diaphragm INHALATION Diaphragm contracts (moves down) Figure 42. 24 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings EXHALATION Diaphragm relaxes (moves up)

 • Lung volume increases – As the rib muscles and diaphragm contract Copyright

• Lung volume increases – As the rib muscles and diaphragm contract Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

How a Bird Breathes • Besides lungs, bird have eight or nine air sacs

How a Bird Breathes • Besides lungs, bird have eight or nine air sacs – That function as bellows that keep air flowing through the lungs Air Anterior air sacs Trachea Posterior air sacs Lungs Air tubes (parabronchi) in lung EXHALATION Air sacs empty; lungs fill INHALATION Air sacs fill Figure 42. 25 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 1 mm

 • Air passes through the lungs – In one direction only • Every

• Air passes through the lungs – In one direction only • Every exhalation – Completely renews the air in the lungs Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Control of Breathing in Humans • The main breathing control centers – Are located

Control of Breathing in Humans • The main breathing control centers – Are located in two regions of the brain, the medulla oblongata and the pons Cerebrospinal fluid 1 The control center in the medulla sets the basic rhythm, and a control center in the pons moderates it, smoothing out the transitions between inhalations and exhalations. 2 Nerve impulses trigger muscle contraction. Nerves from a breathing control center in the medulla oblongata of the brain send impulses to the diaphragm and rib muscles, stimulating them to contract and causing inhalation. Breathing control centers Pons Medulla oblongata 4 The medulla’s control center also helps regulate blood CO 2 level. Sensors in the medulla detect changes in the p. H (reflecting CO 2 concentration) of the blood and cerebrospinal fluid bathing the surface of the brain. 5 Nerve impulses relay changes in CO 2 and O 2 concentrations. Other sensors in the walls of the aorta and carotid arteries in the neck detect changes in blood p. H and send nerve impulses to the medulla. In response, the medulla’s breathing control center alters the rate and depth of breathing, increasing both to dispose of excess CO 2 or decreasing both if CO 2 levels are depressed. Carotid arteries Figure 42. 26 3 In a person at rest, these nerve impulses result in about 10 to 14 inhalations per minute. Between inhalations, the muscles relax and the person exhales. Aorta Diaphragm Rib muscles Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings 6 The sensors in the aorta and carotid arteries also detect changes in O 2 levels in the blood and signal the medulla to increase the breathing rate when levels become very low.

 • The centers in the medulla – Regulate the rate and depth of

• The centers in the medulla – Regulate the rate and depth of breathing in response to p. H changes in the cerebrospinal fluid • The medulla adjusts breathing rate and depth – To match metabolic demands Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Sensors in the aorta and carotid arteries – Monitor O 2 and

• Sensors in the aorta and carotid arteries – Monitor O 2 and CO 2 concentrations in the blood – Exert secondary control over breathing Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Concept 42. 7: Respiratory pigments bind and transport gases • The metabolic

• Concept 42. 7: Respiratory pigments bind and transport gases • The metabolic demands of many organisms – Require that the blood transport large quantities of O 2 and CO 2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

The Role of Partial Pressure Gradients • Gases diffuse down pressure gradients – In

The Role of Partial Pressure Gradients • Gases diffuse down pressure gradients – In the lungs and other organs • Diffusion of a gas – Depends on differences in a quantity called partial pressure Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • A gas always diffuses from a region of higher partial pressure –

• A gas always diffuses from a region of higher partial pressure – To a region of lower partial pressure Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • In the lungs and in the tissues – O 2 and CO

• In the lungs and in the tissues – O 2 and CO 2 diffuse from where their partial pressures are higher to where they are lower Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Inhaled air 160 0. 2 O 2 CO 2 120 27 Alveolar spaces 104

Inhaled air 160 0. 2 O 2 CO 2 120 27 Alveolar spaces 104 O 2 CO 2 40 1 O 2 CO 2 2 Blood entering alveolar capillaries CO Alveolar epithelial cells Exhaled air Alveolar capillaries of lung 45 O 2 CO 2 104 CO 2 Blood leaving tissue capillaries 40 Heart Tissue capillaries Pulmonary veins Systemic arteries O 2 4 45 O 2 CO 2 Tissue cells Figure 42. 27 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings <40 >45 O 2 CO 2 40 O 2 CO 2 Pulmonary arteries Systemic veins Blood leaving alveolar capillaries 3 Blood entering tissue capillaries 100 40 O 2 CO 2

Respiratory Pigments • Respiratory pigments – Are proteins that transport oxygen – Greatly increase

Respiratory Pigments • Respiratory pigments – Are proteins that transport oxygen – Greatly increase the amount of oxygen that blood can carry Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Oxygen Transport • The respiratory pigment of almost all vertebrates – Is the protein

Oxygen Transport • The respiratory pigment of almost all vertebrates – Is the protein hemoglobin, contained in the erythrocytes Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Like all respiratory pigments – Hemoglobin must reversibly bind O 2, loading

• Like all respiratory pigments – Hemoglobin must reversibly bind O 2, loading O 2 in the lungs and unloading it in other parts of the body Heme group Iron atom O 2 loaded in lungs O 2 unloaded In tissues Figure 42. 28 Polypeptide chain Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings O 2

 • Loading and unloading of O 2 – Depend on cooperation between the

• Loading and unloading of O 2 – Depend on cooperation between the subunits of the hemoglobin molecule • The binding of O 2 to one subunit induces the other subunits to bind O 2 with more affinity Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Cooperative O 2 binding and release – Is evident in the dissociation

• Cooperative O 2 binding and release – Is evident in the dissociation curve for hemoglobin • A drop in p. H – Lowers the affinity of hemoglobin for O 2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

O 2 saturation of hemoglobin (%) (a) PO 2 and Hemoglobin Dissociation at 37°C

O 2 saturation of hemoglobin (%) (a) PO 2 and Hemoglobin Dissociation at 37°C and p. H 7. 4 O 2 unloaded from hemoglobin during normal metabolism 100 80 O 2 reserve that can be unloaded from hemoglobin to tissues with high metabolism 60 40 20 0 0 20 40 60 Tissues during Tissues at rest exercise 80 100 Lungs (b) p. H and Hemoglobin Dissociation Figure 42. 29 a, b Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings O 2 saturation of hemoglobin (%) PO 2 (mm Hg) 100 p. H 7. 4 80 Bohr shift: Additional O 2 released from p. H 7. 2 hemoglobin at lower p. H (higher CO 2 concentration) 60 40 20 0 0 20 40 60 PO 2 (mm Hg) 80 100

Carbon Dioxide Transport • Hemoglobin also helps transport CO 2 – And assists in

Carbon Dioxide Transport • Hemoglobin also helps transport CO 2 – And assists in buffering Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

 • Carbon from respiring cells – Diffuses into the blood plasma and then

• Carbon from respiring cells – Diffuses into the blood plasma and then into erythrocytes and is ultimately released in the lungs Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

1 2 3 Carbon dioxide produced by body tissues diffuses into the interstitial fluid

1 2 3 Carbon dioxide produced by body tissues diffuses into the interstitial fluid and the plasma. Over 90% of the CO 2 diffuses into red blood cells, leaving only 7% in the plasma as dissolved CO 2. Some CO 2 is picked up and transported by hemoglobin. Tissue cell CO 2 transport from tissues CO 2 produced 1 Blood plasma CO 2 within capillary Capillary wall 2 CO 2 H 2 O Carbonic acid dissociates into a biocarbonate ion (HCO 3–) and a hydrogen ion (H+). Hemoglobin binds most of the H+ from H 2 CO 3 preventing the H+ from acidifying the blood and thus preventing the Bohr shift. Figure 42. 30 9 Carbonic acid is converted back into CO 2 and water. 10 CO 2 formed from H 2 CO 3 is unloaded from hemoglobin and diffuses into the interstitial fluid. 6 HCO 3– 7 To lungs CO 2 transport to lungs HCO 3– 8 H 2 CO 3 Hb 9 H 2 O 11 CO 2 Hemoglobin releases CO 2 and H+ CO 2 6 In the HCO 3– diffuse from the plasma red blood cells, combining with H+ released from hemoglobin and forming H 2 CO 3. Red Hemoglobin H 2 CO 3 blood Carbonic acid Hb picks up cell CO 2 and H+ HCO 3– + H+ 5 8 3 4 5 + H+ Bicarbonate However, most CO 2 reacts with water in red blood cells, forming carbonic acid (H 2 CO 3), a reaction catalyzed by carbonic anhydrase contained. Within red blood cells. Most of the HCO 3– diffuse into the plasma where it is carried in the bloodstream to the lungs. Interstitial CO 2 fluid HCO 3– 4 7 CO 2 10 CO 2 11 Alveolar space in lung Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings diffuses into the alveolar space, from which it is expelled during exhalation. The reduction of CO 2 concentration in the plasma drives the breakdown of H 2 CO 3 Into CO 2 and water in the red blood cells (see step 9), a reversal of the reaction that occurs in the tissues (see step 4).

Elite Animal Athletes • Migratory and diving mammals – Have evolutionary adaptations that allow

Elite Animal Athletes • Migratory and diving mammals – Have evolutionary adaptations that allow them to perform extraordinary feats Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

The Ultimate Endurance Runner • The extreme O 2 consumption of the antelopelike pronghorn

The Ultimate Endurance Runner • The extreme O 2 consumption of the antelopelike pronghorn – Underlies its ability to run at high speed over long distances Figure 42. 31 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings

Diving Mammals • Deep-diving air breathers – Stockpile O 2 and deplete it slowly

Diving Mammals • Deep-diving air breathers – Stockpile O 2 and deplete it slowly Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings