Fig 42 1 Fig 42 2 Circular canal

  • Slides: 63
Download presentation
Fig. 42 -1

Fig. 42 -1

Fig. 42 -2 Circular canal Mouth Pharynx Mouth Radial canal (a) The moon jelly

Fig. 42 -2 Circular canal Mouth Pharynx Mouth Radial canal (a) The moon jelly Aurelia, a cnidarian 5 cm 2 mm (b) The planarian Dugesia, a flatworm

Fig. 42 -2 a Circular canal Mouth Radial canal (a) The moon jelly Aurelia,

Fig. 42 -2 a Circular canal Mouth Radial canal (a) The moon jelly Aurelia, a cnidarian 5 cm

Fig. 42 -2 b Mouth Pharynx 2 mm (b) The planarian Dugesia, a flatworm

Fig. 42 -2 b Mouth Pharynx 2 mm (b) The planarian Dugesia, a flatworm

Fig. 42 -3 Heart Hemolymph in sinuses surrounding organs Pores Heart Blood Interstitial fluid

Fig. 42 -3 Heart Hemolymph in sinuses surrounding organs Pores Heart Blood Interstitial fluid Small branch vessels In each organ Dorsal vessel (main heart) Tubular heart (a) An open circulatory system Auxiliary hearts Ventral vessels (b) A closed circulatory system

Fig. 42 -4 Gill capillaries Artery Heart Gill circulation Ventricle Atrium Vein Systemic circulation

Fig. 42 -4 Gill capillaries Artery Heart Gill circulation Ventricle Atrium Vein Systemic circulation Systemic capillaries

Fig. 42 -5 Amphibians Reptiles (Except Birds) Mammals and Birds Lung and skin capillaries

Fig. 42 -5 Amphibians Reptiles (Except Birds) Mammals and Birds Lung and skin capillaries Lung capillaries Pulmocutaneous circuit Atrium (A) Ventricle (V) Right systemic aorta Atrium (A) Left Right Systemic circuit Systemic capillaries Pulmonary circuit A V Right Pulmonary circuit A A V Left Systemic capillaries Left systemic aorta A V V Right Left Systemic circuit Systemic capillaries

Fig. 42 -6 Superior vena cava Capillaries of head and forelimbs 7 Pulmonary artery

Fig. 42 -6 Superior vena cava Capillaries of head and forelimbs 7 Pulmonary artery Capillaries of right lung Aorta 9 3 Capillaries of left lung 3 2 4 11 Pulmonary vein Right atrium 1 Pulmonary vein 5 Left atrium 10 Right ventricle Left ventricle Inferior vena cava Aorta 8 Capillaries of abdominal organs and hind limbs

Fig. 42 -7 Pulmonary artery Aorta Pulmonary artery Right atrium Left atrium Semilunar valve

Fig. 42 -7 Pulmonary artery Aorta Pulmonary artery Right atrium Left atrium Semilunar valve Atrioventricular valve Right ventricle Left ventricle

Fig. 42 -8 -1 Semilunar valves closed AV valves open 1 Atrial and ventricular

Fig. 42 -8 -1 Semilunar valves closed AV valves open 1 Atrial and ventricular diastole 0. 4 sec

Fig. 42 -8 -2 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1

Fig. 42 -8 -2 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1 sec AV valves open 1 Atrial and ventricular diastole 0. 4 sec

Fig. 42 -8 -3 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1

Fig. 42 -8 -3 2 Atrial systole; ventricular diastole Semilunar valves closed 0. 1 sec AV valves open 1 Atrial and ventricular diastole 0. 4 sec Semilunar valves open 0. 3 sec AV valves closed 3 Ventricular systole; atrial diastole

Fig. 42 -9 -1 1 Pacemaker generates wave of signals to contract. SA node

Fig. 42 -9 -1 1 Pacemaker generates wave of signals to contract. SA node (pacemaker) ECG

Fig. 42 -9 -2 2 Signals are delayed at AV node

Fig. 42 -9 -2 2 Signals are delayed at AV node

Fig. 42 -9 -3 3 Signals pass to heart apex. Bundle branches Heart apex

Fig. 42 -9 -3 3 Signals pass to heart apex. Bundle branches Heart apex

Fig. 42 -9 -4 4 Signals spread throughout ventricles. Purkinje fibers

Fig. 42 -9 -4 4 Signals spread throughout ventricles. Purkinje fibers

Fig. 42 -9 -5 1 Pacemaker generates wave of signals to contract. SA node

Fig. 42 -9 -5 1 Pacemaker generates wave of signals to contract. SA node (pacemaker) ECG 2 Signals are delayed at AV node 3 Signals pass to heart apex. Bundle branches Heart apex 4 Signals spread throughout ventricles. Purkinje fibers

Fig. 42 -10 Artery Vein SEM 100 µm Valve Basal lamina Endothelium Smooth muscle

Fig. 42 -10 Artery Vein SEM 100 µm Valve Basal lamina Endothelium Smooth muscle Connective tissue Endothelium Capillary Smooth muscle Connective tissue Artery Vein Capillary 15 µm Red blood cell Venule LM Arteriole

120 100 80 60 40 20 0 Venae cavae Veins Venules Capillaries Arterioles Arteries

120 100 80 60 40 20 0 Venae cavae Veins Venules Capillaries Arterioles Arteries Aorta Velocity (cm/sec) 50 40 30 20 10 0 Pressure (mm Hg) Area (cm 2) Fig. 42 -11 5, 000 4, 000 3, 000 2, 000 1, 000 0 Systolic pressure Diastolic pressure

Fig. 42 -12 RESULTS Leu Met Ser Endothelin Ser Cys —NH + 3 Asp

Fig. 42 -12 RESULTS Leu Met Ser Endothelin Ser Cys —NH + 3 Asp Lys Glu Cys Val Tyr Phe Cys His Leu Asp Ile Cys Ile Trp —COO– Trp Parent polypeptide 1 53 73 Endothelin 203

Fig. 42 -12 a RESULTS Leu Met Ser Endothelin Ser Cys —NH + 3

Fig. 42 -12 a RESULTS Leu Met Ser Endothelin Ser Cys —NH + 3 Asp Lys Glu Cys Val Tyr Phe Cys His Leu Asp Ile Trp —COO–

Fig. 42 -12 b RESULTS Cys Trp Parent polypeptide 1 53 73 Endothelin 203

Fig. 42 -12 b RESULTS Cys Trp Parent polypeptide 1 53 73 Endothelin 203

Fig. 42 -13 -1 Pressure in cuff greater than 120 mm Hg Rubber cuff

Fig. 42 -13 -1 Pressure in cuff greater than 120 mm Hg Rubber cuff inflated with air 120 Artery closed

Fig. 42 -13 -2 Pressure in cuff greater than 120 mm Hg Rubber cuff

Fig. 42 -13 -2 Pressure in cuff greater than 120 mm Hg Rubber cuff inflated with air Pressure in cuff drops below 120 mm Hg 120 Artery closed 120 Sounds audible in stethoscope

Fig. 42 -13 -3 Blood pressure reading: 120/70 Pressure in cuff greater than 120

Fig. 42 -13 -3 Blood pressure reading: 120/70 Pressure in cuff greater than 120 mm Hg Rubber cuff inflated with air Pressure in cuff drops below 120 mm Hg 120 Pressure in cuff below 70 mm Hg 120 70 Artery closed Sounds audible in stethoscope Sounds stop

Fig. 42 -14 Direction of blood flow in vein (toward heart) Valve (open) Skeletal

Fig. 42 -14 Direction of blood flow in vein (toward heart) Valve (open) Skeletal muscle Valve (closed)

Fig. 42 -15 Precapillary sphincters Thoroughfare channel Capillaries Arteriole Venule (a) Sphincters relaxed Arteriole

Fig. 42 -15 Precapillary sphincters Thoroughfare channel Capillaries Arteriole Venule (a) Sphincters relaxed Arteriole (b) Sphincters contracted Venule

Fig. 42 -15 a Precapillary sphincters Thoroughfare channel Capillaries Arteriole (a) Sphincters relaxed Venule

Fig. 42 -15 a Precapillary sphincters Thoroughfare channel Capillaries Arteriole (a) Sphincters relaxed Venule

Fig. 42 -15 b Arteriole (b) Sphincters contracted Venule

Fig. 42 -15 b Arteriole (b) Sphincters contracted Venule

Fig. 42 -16 Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Net fluid

Fig. 42 -16 Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Net fluid movement in Direction of blood flow Pressure Blood pressure Inward flow Outward flow Osmotic pressure Arterial end of capillary Venous end

Fig. 42 -16 a Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Direction

Fig. 42 -16 a Body tissue INTERSTITIAL FLUID Capillary Net fluid movement out Direction of blood flow Net fluid movement in

Fig. 42 -16 b Pressure Blood pressure Inward flow Outward flow Osmotic pressure Arterial

Fig. 42 -16 b Pressure Blood pressure Inward flow Outward flow Osmotic pressure Arterial end of capillary Venous end

Fig. 42 -17 Plasma 55% Constituent Major functions Water Solvent for carrying other substances

Fig. 42 -17 Plasma 55% Constituent Major functions Water Solvent for carrying other substances Cellular elements 45% Cell type Ions (blood electrolytes) Sodium Potassium Calcium Magnesium Chloride Bicarbonate Osmotic balance, p. H buffering, and regulation of membrane permeability Number per µL (mm 3) of blood Functions Erythrocytes (red blood cells) 5– 6 million Transport oxygen and help transport carbon dioxide Leukocytes (white blood cells) 5, 000– 10, 000 Defense and immunity Separated blood elements Plasma proteins Albumin Osmotic balance p. H buffering Fibrinogen Clotting Immunoglobulins (antibodies) Defense Lymphocyte Basophil Eosinophil Neutrophil Monocyte Substances transported by blood Nutrients (such as glucose, fatty acids, vitamins) Waste products of metabolism Respiratory gases (O 2 and CO 2) Hormones Platelets 250, 000– 400, 000 Blood clotting

Fig. 42 -18 -1 Collagen fibers Platelet releases chemicals that make nearby platelets sticky

Fig. 42 -18 -1 Collagen fibers Platelet releases chemicals that make nearby platelets sticky Platelet plug

Fig. 42 -18 -2 Collagen fibers Platelet releases chemicals that make nearby platelets sticky

Fig. 42 -18 -2 Collagen fibers Platelet releases chemicals that make nearby platelets sticky Platelet plug Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K)

Fig. 42 -18 -3 Collagen fibers Platelet releases chemicals that make nearby platelets sticky

Fig. 42 -18 -3 Collagen fibers Platelet releases chemicals that make nearby platelets sticky Platelet plug Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K) Prothrombin Thrombin

Fig. 42 -18 -4 Red blood cell Collagen fibers Platelet releases chemicals that make

Fig. 42 -18 -4 Red blood cell Collagen fibers Platelet releases chemicals that make nearby platelets sticky Platelet plug Fibrin clot Clotting factors from: Platelets Damaged cells Plasma (factors include calcium, vitamin K) Prothrombin Thrombin Fibrinogen Fibrin 5 µm

Fig. 42 -19 Stem cells (in bone marrow) Myeloid stem cells Lymphocytes B cells

Fig. 42 -19 Stem cells (in bone marrow) Myeloid stem cells Lymphocytes B cells T cells Neutrophils Erythrocytes Platelets Eosinophils Monocytes Basophils

Fig. 42 -20 Connective tissue Smooth muscle (a) Normal artery Endothelium Plaque 50 µm

Fig. 42 -20 Connective tissue Smooth muscle (a) Normal artery Endothelium Plaque 50 µm (b) Partly clogged artery 250 µm

Fig. 42 -20 a Connective tissue Smooth muscle (a) Normal artery Endothelium 50 µm

Fig. 42 -20 a Connective tissue Smooth muscle (a) Normal artery Endothelium 50 µm

Fig. 42 -20 b Plaque (b) Partly clogged artery 250 µm

Fig. 42 -20 b Plaque (b) Partly clogged artery 250 µm

Fig. 42 -21 Coelom Gills Parapodium (functions as gill) (a) Marine worm Gills Tube

Fig. 42 -21 Coelom Gills Parapodium (functions as gill) (a) Marine worm Gills Tube foot (b) Crayfish (c) Sea star

Fig. 42 -21 a Parapodium (functions as gill) (a) Marine worm

Fig. 42 -21 a Parapodium (functions as gill) (a) Marine worm

Fig. 42 -21 b Gills (b) Crayfish

Fig. 42 -21 b Gills (b) Crayfish

Fig. 42 -21 c Coelom Gills Tube foot (c) Sea star

Fig. 42 -21 c Coelom Gills Tube foot (c) Sea star

Fig. 42 -22 Fluid flow through gill filament Oxygen-poor blood Anatomy of gills Oxygen-rich

Fig. 42 -22 Fluid flow through gill filament Oxygen-poor blood Anatomy of gills Oxygen-rich blood Gill arch Lamella Gill arch Gill filament organization Blood vessels Water flow Operculum Water flow between lamellae Blood flow through capillaries in lamella Countercurrent exchange PO (mm Hg) in water 2 150 120 90 60 30 Gill filaments Net diffusion of O 2 from water to blood 140 110 80 50 20 PO (mm Hg) in blood 2

Fig. 42 -23 Air sacs Tracheae External opening Tracheoles Mitochondria Muscle fiber Body cell

Fig. 42 -23 Air sacs Tracheae External opening Tracheoles Mitochondria Muscle fiber Body cell Air sac Tracheole Trachea Air Body wall 2. 5 µm

Fig. 42 -24 Branch of pulmonary vein (oxygen-rich blood) Branch of pulmonary artery (oxygen-poor

Fig. 42 -24 Branch of pulmonary vein (oxygen-rich blood) Branch of pulmonary artery (oxygen-poor blood) Terminal bronchiole Nasal cavity Pharynx Larynx (Esophagus) Alveoli Left lung Trachea Right lung Bronchus Bronchiole Diaphragm Heart SEM 50 µm Colorized SEM 50 µm

Fig. 42 -25 Rib cage expands as rib muscles contract Air inhaled Rib cage

Fig. 42 -25 Rib cage expands as rib muscles contract Air inhaled Rib cage gets smaller as rib muscles relax Air exhaled Lung Diaphragm INHALATION Diaphragm contracts (moves down) EXHALATION Diaphragm relaxes (moves up)

Fig. 42 -26 Air Anterior air sacs Posterior air sacs Air Trachea Lungs Air

Fig. 42 -26 Air Anterior air sacs Posterior air sacs Air Trachea Lungs Air tubes (parabronchi) in lung INHALATION Air sacs fill EXHALATION Air sacs empty; lungs fill 1 mm

Fig. 42 -27 Cerebrospinal fluid Pons Breathing control centers Medulla oblongata Carotid arteries Aorta

Fig. 42 -27 Cerebrospinal fluid Pons Breathing control centers Medulla oblongata Carotid arteries Aorta Diaphragm Rib muscles

Fig. 42 -28 Alveolus PCO 2 = 40 mm Hg PO 2 = 100

Fig. 42 -28 Alveolus PCO 2 = 40 mm Hg PO 2 = 100 mm Hg PO 2 = 40 Alveolus PO 2 = 100 PCO 2 = 46 Circulatory system PO 2 = 40 PCO 2 = 40 Circulatory system PO 2 = 100 PO 2 ≤ 40 mm Hg PCO 2 = 46 PCO 2 ≥ 46 mm Hg Body tissue (a) Oxygen PCO 2 = 40 Body tissue (b) Carbon dioxide

Fig. 42 -UN 1 Chains Iron Heme Chains Hemoglobin

Fig. 42 -UN 1 Chains Iron Heme Chains Hemoglobin

Fig. 42 -29 O 2 saturation of hemoglobin (%) 100 O 2 unloaded to

Fig. 42 -29 O 2 saturation of hemoglobin (%) 100 O 2 unloaded to tissues at rest 80 O 2 unloaded to tissues during exercise 60 40 20 0 0 20 Tissues during exercise 40 60 80 Tissues at rest PO 2 (mm Hg) 100 Lungs (a) PO 2 and hemoglobin dissociation at p. H 7. 4 O 2 saturation of hemoglobin (%) 100 p. H 7. 4 80 p. H 7. 2 Hemoglobin retains less O 2 at lower p. H (higher CO 2 concentration) 60 40 20 0 0 20 40 60 PO 2 (mm Hg) (b) p. H and hemoglobin dissociation 80 100

O 2 saturation of hemoglobin (%) Fig. 42 -29 a 100 O 2 unloaded

O 2 saturation of hemoglobin (%) Fig. 42 -29 a 100 O 2 unloaded to tissues at rest 80 O 2 unloaded to tissues during exercise 60 40 20 0 0 20 40 60 Tissues during Tissues exercise at rest PO 2 (mm Hg) 80 100 Lungs (a) PO 2 and hemoglobin dissociation at p. H 7. 4

O 2 saturation of hemoglobin (%) Fig. 42 -29 b 100 p. H 7.

O 2 saturation of hemoglobin (%) Fig. 42 -29 b 100 p. H 7. 4 80 p. H 7. 2 Hemoglobin retains less O 2 at lower p. H (higher CO 2 concentration) 60 40 20 0 0 20 40 60 80 PO 2 (mm Hg) (b) p. H and hemoglobin dissociation 100

Fig. 42 -30 Body tissue CO 2 transport from tissues CO 2 produced Interstitial

Fig. 42 -30 Body tissue CO 2 transport from tissues CO 2 produced Interstitial fluid Plasma within capillary CO 2 Capillary wall CO 2 H 2 O Hemoglobin picks up CO 2 and H+ Red H 2 CO 3 Hb blood Carbonic acid cell HCO 3– + Bicarbonate H+ HCO 3– To lungs CO 2 transport to lungs HCO 3– + H 2 CO 3 H+ Hb Hemoglobin releases CO 2 and H+ H 2 O CO 2 Alveolar space in lung

Fig. 42 -30 a Body tissue CO 2 produced Interstitial fluid CO 2 Plasma

Fig. 42 -30 a Body tissue CO 2 produced Interstitial fluid CO 2 Plasma within capillary CO 2 transport from tissues Capillary wall CO 2 H 2 O Red H 2 CO 3 Hb blood Carbonic acid cell HCO 3– + Bicarbonate H+ HCO 3– To lungs Hemoglobin picks up CO 2 and H+

Fig. 42 -30 b CO 2 transport to lungs HCO 3– + H 2

Fig. 42 -30 b CO 2 transport to lungs HCO 3– + H 2 CO 3 H+ Hemoglobin releases CO 2 and H+ Hb H 2 O CO 2 Plasma within lung capillary CO 2 Alveolar space in lung

Fig. 42 -31 RESULTS Goat Pronghorn 100 Relative values (%) 90 80 70 60

Fig. 42 -31 RESULTS Goat Pronghorn 100 Relative values (%) 90 80 70 60 50 40 30 20 10 0 V O 2 max Lung Cardiac capacity output Muscle Mitochonmass drial volume

Fig. 42 -UN 2 Inhaled air Alveolar epithelial cells Exhaled air Alveolar spaces CO

Fig. 42 -UN 2 Inhaled air Alveolar epithelial cells Exhaled air Alveolar spaces CO 2 CO Pulmonary arteries O 2 2 O 2 Alveolar capillaries of lung Pulmonary veins Systemic arteries Heart CO Systemic capillaries 2 CO 2 O 2 Body tissue

O 2 saturation of hemoglobin (%) Fig. 42 -UN 3 100 80 60 Fetus

O 2 saturation of hemoglobin (%) Fig. 42 -UN 3 100 80 60 Fetus Mother 40 20 0 0 20 40 60 80 100 PO 2 (mm Hg)

Fig. 42 -UN 4

Fig. 42 -UN 4