Agilent Technologies Classroom Series Practical Temperature Measurements 001

  • Slides: 61
Download presentation
Agilent Technologies Classroom Series Practical Temperature Measurements 001

Agilent Technologies Classroom Series Practical Temperature Measurements 001

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 1

What is Temperature? _A scalar quantity that determines the direction of heat flow between

What is Temperature? _A scalar quantity that determines the direction of heat flow between two bodies _A statistical measurement _A difficult measurement _A mostly empirical measurement 002

How is heat transferred? _Conduction _ Metal coffee cup _Convection _Radiation 003

How is heat transferred? _Conduction _ Metal coffee cup _Convection _Radiation 003

The Dewar _Glass is a poor conductor _Gap reduces conduction _Metallization reflects radiation _Vacuum

The Dewar _Glass is a poor conductor _Gap reduces conduction _Metallization reflects radiation _Vacuum reduces convection 004

Thermal Mass _Don't let the measuring Sensor device change the temperature of what you're

Thermal Mass _Don't let the measuring Sensor device change the temperature of what you're measuring. _Response time = _ f{Thermal mass} _ f{Measuring device} Sensor 005

Temperature errors _What is YOUR normal temperature? _Thermometer accuracy, resolution _Contact time _Thermal mass

Temperature errors _What is YOUR normal temperature? _Thermometer accuracy, resolution _Contact time _Thermal mass of thermometer, tongue _Human error in reading 97. 6 98. 6 99. 6 36. 5 37 37. 5 006

History of temperature sensors _1600 ad _1700 12 1 ad 96 _Fahrenheit _ Instrument

History of temperature sensors _1600 ad _1700 12 1 ad 96 _Fahrenheit _ Instrument 0 _Galileo: First temp. sensor _ pressure- sensitive _ not repeatable _ Early thermometers _ Not repeatable _ No good way to calibrate Maker _ 12*8=96 points _ Hg: Repeatable _ One standard scale 007

The 1700's: Standardization _1700 ad _1800 ad 0 100 _Thomson effect _ Absolute zero

The 1700's: Standardization _1700 ad _1800 ad 0 100 _Thomson effect _ Absolute zero 100 _Celsius: _Common, repeatable calibration reference points 0 _"Centigrade" scale 008

1821: It was a very good year _1800 ad _1900 ad _The Seebeck effect

1821: It was a very good year _1800 ad _1900 ad _The Seebeck effect _Davy: The RTD _Pt 100 d @ O deg. C 009

The 1900's: Electronic sensors _1900 ad _Thermistor _2000 ad _1 u. A/K _IC sensor

The 1900's: Electronic sensors _1900 ad _Thermistor _2000 ad _1 u. A/K _IC sensor _IPTS 1968 _IPTS 1990 _"Degree Kelvin">> "kelvins" _"Centigrade">> " Celsius" 010

Absolute zero Temperature scales Freezing point H 2 O _Celsius 0 100 _Kelvin 273.

Absolute zero Temperature scales Freezing point H 2 O _Celsius 0 100 _Kelvin 273. 15 32 212 -273. 15 0 _Fahrenheit -459. 67 0 Boiling point H O 2 _Rankine 427. 67 671. 67 _"Standard" is "better": _ _ Reliable reference points Easy to understand 011

IPTS '90: More calibration points – – 273. 16: TP H 2 O 234.

IPTS '90: More calibration points – – 273. 16: TP H 2 O 234. 3156: TP Hg Large gap – – – 83. 8058: TP Ar 54. 3584: TP O 2 24. 5561: TP 20. 3: BP Ne 17 Liq/vapor H 2 13. 81 TP H 2 3 to 5: Vapor H 2 He – – 1357. 77: FP Cu 1337. 33: FP Au 1234. 93: FP Ag 933. 473: FP Al 692. 677: FP Zn 505. 078: FP Sn 429. 7485: FP In – 302. 9146: MP Ga 012

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 2

Bimetal thermometer _Two dissimilar _Forces due to thermal expansion metals, tightly bonded 0 _Result

Bimetal thermometer _Two dissimilar _Forces due to thermal expansion metals, tightly bonded 0 _Result 100 200 300 _Bimetallic thermometer 400 _ Poor accuracy _ Hysteresis _Thermal expansion causes big problems in other designs: _ IC bonds _ Mechanical interference 013

100 0 Liquid thermometer; Paints _Thermally-sensitive paints _Liquid-filled thermometer _ _ _ _ Irreversible

100 0 Liquid thermometer; Paints _Thermally-sensitive paints _Liquid-filled thermometer _ _ _ _ Irreversible change _ Low resolution _ Useful in hard-to-measure area Accurate over a small range Accuracy & resolution= f(length) Range limited by liquid Fragile Large thermal mass Slow 014

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 3

Optical Pyrometer _Infrared Radiation-sensitive _Photodiode or photoresistor _Accuracy= f{emissivity} _Useful @ very high temperatures

Optical Pyrometer _Infrared Radiation-sensitive _Photodiode or photoresistor _Accuracy= f{emissivity} _Useful @ very high temperatures _Non-contacting _Very expensive _Not very accurate 015

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 4

Resistance Temperature Detector _Most accurate & stable _Good to 800 degrees Celsius _Resistance= f{Absolute

Resistance Temperature Detector _Most accurate & stable _Good to 800 degrees Celsius _Resistance= f{Absolute T} _Self-heating a problem _Low resistance _Nonlinear 016

RTD Equation _R= 100 Ohms @ O C _Callendar-Van Deusen Equation: For T>OC: _R=Ro(1+a.

RTD Equation _R= 100 Ohms @ O C _Callendar-Van Deusen Equation: For T>OC: _R=Ro(1+a. T) - Ro(ad(. 01 T)(. 01 T-1)) _ Ro=100 @ O C _ a= 0. 00385 / - C for Pt _ d= 1. 49 R 300 200 100 _0 Nonlinearity 200 400 600 800 T 017

Measuring an RTD: 2 -wire method 100 d Pt Rx Rlead + - V

Measuring an RTD: 2 -wire method 100 d Pt Rx Rlead + - V I ref= 5 m. A _R= Iref*(Rx + 2* Rlead) _ Error= 2 d /. 385= more than 5 degrees C for 1 ohm Rlead! _Self-heating: _ For 0. 5 V signal, I= 5 m. A; P=. 5*. 005=2. 5 mwatts _ @ 1 m. W/deg C, Error = 2. 5 deg C! _Moral: Minimize Iref; Use 4 -wire method _ If you must use 2 -wire, NULL out the lead resistance 018

The 4 -Wire technique 100 d Rx Rlead=1 d + - V I ref=

The 4 -Wire technique 100 d Rx Rlead=1 d + - V I ref= 5 m. A _ R= Iref * Rx _ Error not a function of R in source or sense leads _ No error due to changes in lead R _ Twice as much wire _ Twice as many scanner channels _ Usually slower than 2 -wire 019

Offset compensation Voffset + 100 d - V I ref (switched) _Eliminates thermal voltages

Offset compensation Voffset + 100 d - V I ref (switched) _Eliminates thermal voltages _ Measure V without I applied _ Measure V With I applied R= V I 020

Bridge method 1000 d V 1000 d 100 d _High resolution (DMM stays on

Bridge method 1000 d V 1000 d 100 d _High resolution (DMM stays on most sensitive range) _Nonlinear output _Bridge resistors too close to heat source 021

3 -Wire bridge 100 d 1000 d Rlead 1 V 1000 d Sense wire

3 -Wire bridge 100 d 1000 d Rlead 1 V 1000 d Sense wire 3 -Wire PRTD Rlead 2 _Keeps bridge away from heat source _Break DMM lead (dashed line); connect 100 d to RTD through 3 rd "sense" wire _If Rlead 1= Rlead 2, sense wire makes error small _Series resistance of sense wire causes no error 022

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 5

Electrical sensors: Thermistor Rlead=1 5 k d d Rlead=1 d + - _Hi-Z; Sensitive:

Electrical sensors: Thermistor Rlead=1 5 k d d Rlead=1 d + - _Hi-Z; Sensitive: 5 k V d I= 0. 1 m. A @ 25 C; R = 4%/deg C _Limited range _2 -Wire method: R= I * (Rthmr + 2*Rlead) _ Lead R Error= 2 d /400= 0. 005 degrees C _Low thermal mass: High self-heating _Very nonlinear 023

I. C. Sensor AD 590 + 5 V - I= 1 u. A/K 100

I. C. Sensor AD 590 + 5 V - I= 1 u. A/K 100 d V = 1 m. V/K 960 d _High output _Very linear _Accurate @ room ambient _Limited range _Cheap 024

Summary: Absolute T devices RTD Thermistor AD 590 I. C. _Most accurate _Most stable

Summary: Absolute T devices RTD Thermistor AD 590 I. C. _Most accurate _Most stable _Fairly linear _High output _Fast _2 -wire meas. _High output _Most linear _Inexpensive _Expensive _Slow _Needs I source _Self-heating _4 -wire meas. _Very nonlinear _Limited range _Needs I source _Self-heating _Fragile _Limited variety _Limited range _Needs V source _Self-heating 025

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 6

Thermocouples The Gradient Theory Ta Tx V= e(T) d. T Ta _The WIRE is

Thermocouples The Gradient Theory Ta Tx V= e(T) d. T Ta _The WIRE is the sensor, not the junction _The Seebeck coefficient (e) is a function of temperature 026

Making a thermocouple Ta Tx B V _Two wires make a A Ta thermocouple

Making a thermocouple Ta Tx B V _Two wires make a A Ta thermocouple V= e Ta A _Voltage output is Ta Tx d. T + e B d. T nonzero if metals are not the same Tx 027

Gradient theory also says. . . Ta Tx A V A Ta Ta Tx

Gradient theory also says. . . Ta Tx A V A Ta Ta Tx V= e Ta _If wires are the A d. T + e A d. T = 0 same type, or if there is one wire, and both ends are at the same temperature, output= Zero. Tx 028

Now try to measure it: a Fe b Tx _Theoretically, Vab= f{Tx-Tab} Con _But,

Now try to measure it: a Fe b Tx _Theoretically, Vab= f{Tx-Tab} Con _But, try to measure it with a DMM: Cu Tx V Cu Cu Fe Con = Fe V Tx Con Cu _Result: 3 unequal junctions, all at unknown temperatures 029

Solution: Reference Thermocouple _Problems: a) 3 different thermocouples, b) 3 unknown temperatures _Solutions: a)

Solution: Reference Thermocouple _Problems: a) 3 different thermocouples, b) 3 unknown temperatures _Solutions: a) Add an opposing thermocouple b) Use a known reference temp. Isothermal block Fe Cu Cu Fe Tx Add Tx Con V V Con Tref = 0 o. C Cu Fe 030

The Classical Method Cu Fe Tx V Con Cu Fe Tref o =0 C

The Classical Method Cu Fe Tx V Con Cu Fe Tref o =0 C _If both Cu junctions are at same T, the two "batteries" cancel _Tref is an ice bath (sometimes an electronic ice bath) _All T/C tables are referenced to an ice bath _V= f{Tx-Tref} _Question: How can we eliminate the ice bath? 031

Eliminating the ice bath _Don't force Tref to icepoint, just Cu V Fe Con

Eliminating the ice bath _Don't force Tref to icepoint, just Cu V Fe Con Cu Fe measure it _Compensate for Tref Tx mathematically: V=f{ Tx - Tref } Tice Tref Tice _If we know Tref Tice , we can compute Tx. 032

Eliminating the second T/C Cu Fe Tx V _Extend the isothermal block _If isothermal,

Eliminating the second T/C Cu Fe Tx V _Extend the isothermal block _If isothermal, V 1 -V 2=0 2 Con Cu Fe Tref Cu Fe 1 Tx V Tref 2 Con Cu 1 033

The Algorithm for one T/C Cu V Tref Cu Fe IC or thermistor Tx

The Algorithm for one T/C Cu V Tref Cu Fe IC or thermistor Tx _Measure Tref: RTD, o _Tref ==> Vref @ O C for Type J(Fe Con -C) _Know V, Know Vref: Compute Vx _Solve for Tx using Vx Compute Vx=V+Vref Vx Vref 0 o Tref V Tx 034

V Linearization Small sectors 0 o Tref Tx T 2 3 V +. .

V Linearization Small sectors 0 o Tref Tx T 2 3 V +. . a 9 V _Polynomial: T=a +a V +a 0 1 2 3 9 _Nested (faster): T=a 0 +V(a 1 +V(a 2 +V(a 3 2 +. . . . ))))) 0 _Small sectors (faster): T=T +b. V+c. V _Lookup table: Fastest, most memory 035

Common Thermocouples m. V E 60 Platinum T/Cs Base Metal T/Cs K J N

Common Thermocouples m. V E 60 Platinum T/Cs Base Metal T/Cs K J N 40 20 T 0 500 RS 1000 2000 deg C _All have Seebeck coefficients in MICROvolts/deg. C 036

Common Thermocouples Type J K T S E N Metals Seebeck Coeff: u. V/C

Common Thermocouples Type J K T S E N Metals Seebeck Coeff: u. V/C Fe-Con Ni-Cr Cu-Con Pt/Rh-Pt Ni/Cr-Con Ni/Cr/Si-Ni/Si 50 40 38 10 59 39 _Microvolt output is a tough measurement _Type "N" is fairly new. . more rugged and higher temp. than type K, but still cheap 037

Extension Wires _Possible problem here Large extension wires Small diameter measurement wires _Extension wires

Extension Wires _Possible problem here Large extension wires Small diameter measurement wires _Extension wires are cheaper, more rugged, but not exactly the same characteristic curve as the T/C. _Keep extension/TC junction near room temperature _Where is most of the signal generated in this circuit? 038

Noise: DMM Glossary DMM Input Resistance HI LO HI DMM Input Resistance LO Normal

Noise: DMM Glossary DMM Input Resistance HI LO HI DMM Input Resistance LO Normal Mode ac NOISE Normal Mode dc SIGNAL _Normal Mode: In series with input _Common Mode: Both HI and LO terminals driven equally Common Mode ac NOISE 039

Generating noise Electrostatic Noise DMM Input Resistance Magnetic Noise HI Normal Mode LO dc

Generating noise Electrostatic Noise DMM Input Resistance Magnetic Noise HI Normal Mode LO dc SIGNAL _Large surface area, high Rlead: Max. static DMM Input Resistance R leak coupling HI_Large loop area: Max. magnetic coupling _Large R lead, small R leak: R lead Max. LO common mode noise Common Mode Current Common Mode ac source 040

Eliminating noise Electrostati c Noise DM M Inpu R t Magnetic Noise HI Normal

Eliminating noise Electrostati c Noise DM M Inpu R t Magnetic Noise HI Normal Mode dc SIGNAL LO _Filter, shielding, small loop area (Caution: filter slows down the measurement) HI DM M Input R _Make R leak close to LO - + R leak Common Mode Current Common Mode ac source 041

Magnetic Noise _Magnetic coupling DMM Input Resistance Induced I _Minimize area _Twist leads _Move

Magnetic Noise _Magnetic coupling DMM Input Resistance Induced I _Minimize area _Twist leads _Move away from strong fields 042

Reducing Magnetic Noise _Equal and opposite induced currents DMM Input Resistance _Even with twisted

Reducing Magnetic Noise _Equal and opposite induced currents DMM Input Resistance _Even with twisted pair: _ Minimize area _ Move away from strong fields 043

Electrostatic noise AC Noise source Stray capacitances DMM Input Resistance Inoise Stray resistances _Stray

Electrostatic noise AC Noise source Stray capacitances DMM Input Resistance Inoise Stray resistances _Stray capacitance causes I noise _DMM resistance to ground is important 044

Reducing Electrostatic AC Noise source Coupling DMM Input Resistance HI LO Rleak _Shield shunts

Reducing Electrostatic AC Noise source Coupling DMM Input Resistance HI LO Rleak _Shield shunts stray current _For noise coupled to the tip, Rleak is still important 045

A scanning system for T/Cs _One thermistor, multiple T/C channels _Noise reduction _CPU linearizes

A scanning system for T/Cs _One thermistor, multiple T/C channels _Noise reduction _CPU linearizes T/C _DMM must be very high quality OHMs Conv. HI LO Isolators u. P Integrating A/D Floating Circuitry ROM Lookup u. P I/O (HP-IB, RS-232) To Computer Grounded Circuitry 046

Errors in the system Ref. Block Thermal gradient T/C Calibration & Wire errors Thermal

Errors in the system Ref. Block Thermal gradient T/C Calibration & Wire errors Thermal emf Ref. Thermistor cal, linearity OHMs Conv. Reference Thermistor Ohms measurement HI LO Linearization algorithm Isolators u. P Integrating A/D Floating Circuitry ROM Lookup DMM offset, linearity, thermal emf, noise u. P Extension wire junction error I/O (HP-IB, RS-232) Grounded Circuitry 047

Physical errors _Shorts, shunt impedance _Galvanic action _Decalibration _Sensor accuracy _Thermal contact _Thermal shunting

Physical errors _Shorts, shunt impedance _Galvanic action _Decalibration _Sensor accuracy _Thermal contact _Thermal shunting 048

Physical Errors _Water droplets cause galvanic action; huge offsets _Hot spot causes shunt Z,

Physical Errors _Water droplets cause galvanic action; huge offsets _Hot spot causes shunt Z, mete shows the WRONG temperatur _Exceeding the T/C's range can cause permanent offset _Real T/C's have absolute accuracy of 1 deg C @ 25 C: Calibrate often and take care 049

Physical error: Thermal contact Surface probe _Make sure thermal mass is much smaller than

Physical error: Thermal contact Surface probe _Make sure thermal mass is much smaller than that of object being measured 050

Physical errors: Decalibration 350 C 300 C 200 C 100 C 975 C 1000

Physical errors: Decalibration 350 C 300 C 200 C 100 C 975 C 1000 C This section _Don't exceed Tmax of T/C produces the _Temp. cycling causes work-hardening, ENTIRE signal decalibration _Replace the GRADIENT section 051

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor,

Agenda _Background, history _Mechanical sensors _Electrical sensors _ Optical Pyrometer _ RTD _ Thermistor, IC _ Thermocouple _Summary & Examples A 7

The basic 4 temperature sensors RTD Thermistor _Most accurate _High output _Fast _Most stable

The basic 4 temperature sensors RTD Thermistor _Most accurate _High output _Fast _Most stable _2 -wire meas. _Fairly linear _Expensive _Very nonlinear _Slow _Limited range _Needs I source _Self-heating _4 -wire meas. _Fragile AD 590 I. C. Thermocouple _High output _Most linear _Cheap _Wide variety _Cheap _Wide T. range _No self-heating _Limited variety _Limited range _Hard to measure _Needs V _Relative T. only source _Nonlinear _Self-heating _Special connectors Absolute temperature sensors 052

Summary _Innovation by itself is not enough. . . you must develop standards _Temperature

Summary _Innovation by itself is not enough. . . you must develop standards _Temperature is a very difficult, mostly empirical measurement _Careful attention to detail is required 053

Examples Measurement _Photochemical process Sensor _RTD (most accurate) control: _Thermistor _Flower petal: _Molten glass:

Examples Measurement _Photochemical process Sensor _RTD (most accurate) control: _Thermistor _Flower petal: _Molten glass: _Induction furnace: _100 degree Heat aging oven: (lowest thermal mass) _Optical pyrometer (hi temp, no contact) _RTD (if <800 C); or T/C (Beware magnetic I noise) _Any of the 4 sensors 054