Cytoskeleton Locomotion Kohidai Laszlo MD Ph D Med

  • Slides: 67
Download presentation
Cytoskeleton - Locomotion Kohidai, Laszlo MD, Ph. D Med. habil. , Assoc. Professor Dept.

Cytoskeleton - Locomotion Kohidai, Laszlo MD, Ph. D Med. habil. , Assoc. Professor Dept. Genetics, Cell & Immunobiology, Semmelweis University Lecture ED 2017 http: //gsi. semmelweis. hu

Main functions of cytoskeleton • • Determines the shape of the cell Anchores organelles

Main functions of cytoskeleton • • Determines the shape of the cell Anchores organelles Movement of organelles Tensile strength Movement of chromosomes Polarity Motility !

Cytoskeleton Microfilaments (actin) l Microtubuli (tubulin) l Intermedier filaments l Motor proteins l Actin

Cytoskeleton Microfilaments (actin) l Microtubuli (tubulin) l Intermedier filaments l Motor proteins l Actin and microtubule associated proteins l !

! Microfilaments Microtubuli Intermedier filaments

! Microfilaments Microtubuli Intermedier filaments

SLIDING ! Globular proteins Ca 2+ ATP Fibrillar proteins Motor proteins

SLIDING ! Globular proteins Ca 2+ ATP Fibrillar proteins Motor proteins

Microfilaments

Microfilaments

Polymerization of actin ADP ATP ! + Depolymerization ADP ATP cytochalasin – inh. phalloidin

Polymerization of actin ADP ATP ! + Depolymerization ADP ATP cytochalasin – inh. phalloidin - stabilizer Pi Polymerization - slow

Actin - still in Prokaryots ! ((Ent et al. Nature 2001, 413, 39)

Actin - still in Prokaryots ! ((Ent et al. Nature 2001, 413, 39)

Other actin homologues ((Roeben A et al. J Mol. Biol 2006, 358, 145)

Other actin homologues ((Roeben A et al. J Mol. Biol 2006, 358, 145)

Comparison of homologues l Polymerization in both forms l Opposite chirality !!! ((Wickstead and

Comparison of homologues l Polymerization in both forms l Opposite chirality !!! ((Wickstead and Gull J Cell. Biol 2011, 194, 513)

! Cyclosis Moving cytoplasm Stationary (cortical) cytoplasm Plasma membrane Cell-wall Actin filaments Chloroplasts l

! Cyclosis Moving cytoplasm Stationary (cortical) cytoplasm Plasma membrane Cell-wall Actin filaments Chloroplasts l Transitional connections between actin and myosin l Ca 2+, temperature- and p. H-dependent (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

„Fountain” mechanism ! Ca 2+-dep. requires ATP Formation of pseudopodium stress-fibrillums integrins Mono. Poly.

„Fountain” mechanism ! Ca 2+-dep. requires ATP Formation of pseudopodium stress-fibrillums integrins Mono. Poly. Lobo- podial Filo. Reticulo-

Cross-linking proteins of actin ! contractile bundle a actinin – in stress fibr. gel-like

Cross-linking proteins of actin ! contractile bundle a actinin – in stress fibr. gel-like network filamin - cortex „tight” parallel bundle fimbrin – in filopodium

Migrating keratinocyte 15 mm/sec Formation of lobopodium actin-network microtubuli

Migrating keratinocyte 15 mm/sec Formation of lobopodium actin-network microtubuli

! Regulator proteins of actin polymerisation g. CAP 39 Tropomodulin + - Cofilin Severin

! Regulator proteins of actin polymerisation g. CAP 39 Tropomodulin + - Cofilin Severin Gelsolin Villin Cap. Z

Actin polymerization – acrosomal-reaction (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

Actin polymerization – acrosomal-reaction (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

Listeria monocytogenes • local actin polymerization • speed: 10 mm/min • high ability to

Listeria monocytogenes • local actin polymerization • speed: 10 mm/min • high ability to transmit in tissues actin (Fred Soo & Julie Theriot Laboratory

Model of actin nucleation ! WASP = Wiscott-Aldrich syndr. prot.

Model of actin nucleation ! WASP = Wiscott-Aldrich syndr. prot.

Structure of cortical region (Svitkina, TM, Borisy GG J. Cell Biol. 1999, 145, 1009)

Structure of cortical region (Svitkina, TM, Borisy GG J. Cell Biol. 1999, 145, 1009)

Actin – membrane links membrane Myosin I. Arp 2/3 F-Actin Profilin - G-actin Filamin

Actin – membrane links membrane Myosin I. Arp 2/3 F-Actin Profilin - G-actin Filamin Integrin !

Profilin-mechanism Tb 4 = thymosin b 4 Proline-rich protein (Lodish, H. et al. Mol.

Profilin-mechanism Tb 4 = thymosin b 4 Proline-rich protein (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

Filamin – Membrane link filamin actin

Filamin – Membrane link filamin actin

Structure of focal contact actin filament a actinin vinculin + integrin paxillin talin fibronectin

Structure of focal contact actin filament a actinin vinculin + integrin paxillin talin fibronectin !

A plasma membrane – cortex links Thrombocyte Glycophorin Ankyrin Spectrin tetramer Muscle Epithel ((Lux

A plasma membrane – cortex links Thrombocyte Glycophorin Ankyrin Spectrin tetramer Muscle Epithel ((Lux SE, 1979 Nature 281: 426)

E Electromagnetic field induces the transformation of cytoskeleton and formation of pseudopodia - Adhesion

E Electromagnetic field induces the transformation of cytoskeleton and formation of pseudopodia - Adhesion plaque ++ + -

head ! Myosin Ca 2+-dependent phosphorylation and its effect on the 3 D strcture

head ! Myosin Ca 2+-dependent phosphorylation and its effect on the 3 D strcture light chain heavy chain a helix ATP - ADP Pi myosin I. 150 k. D monomer myosin I I. 260 k. D dimer Head: - ATP-ase - motor

Distribution of myosines in the migrating Dyctiostelium and in dividing cell myosin I. (green)

Distribution of myosines in the migrating Dyctiostelium and in dividing cell myosin I. (green) myosin II. (red) (Fukui, Y. Mol. Cell Biol 2000, 785))

- + ! Main types of interactions between the globular and fibrillar components of

- + ! Main types of interactions between the globular and fibrillar components of cytoskeleton membrane

Non-treated F-actin blocked MT-blocked

Non-treated F-actin blocked MT-blocked

Microtubules

Microtubules

Tubulin – still in Prokaryotes ! Fts. Z Tubulin (Margolin Laboratory, University of Texas)

Tubulin – still in Prokaryotes ! Fts. Z Tubulin (Margolin Laboratory, University of Texas)

Comparison of homologues l Polymerization in both forms l Monomers build helical structure vs.

Comparison of homologues l Polymerization in both forms l Monomers build helical structure vs. dimers build tubulus ((Wickstead and Gull J Cell. Biol 2011, 194, 513)

Polymerization of tubulin GTP GTP Polymerization - fast Protofilament (strait) GDP GDP Protofilament (curved)

Polymerization of tubulin GTP GTP Polymerization - fast Protofilament (strait) GDP GDP Protofilament (curved) GDP Depolymerization !

Dynamics of microtubule-assembly Nucleation Elongation + incorporation balanced release - !

Dynamics of microtubule-assembly Nucleation Elongation + incorporation balanced release - !

Role of g-tubulin in nucleation (Wiease et al. Curr. Opin. Struct. Biol. 1999, 9,

Role of g-tubulin in nucleation (Wiease et al. Curr. Opin. Struct. Biol. 1999, 9, 250) !

Microtubular systems in the cells centrosome Cilla Basal body - Centrosome Dividing cell spindle

Microtubular systems in the cells centrosome Cilla Basal body - Centrosome Dividing cell spindle - Cilia / flagellum - Mitotic system - Vesicular transport ! Interphase cell Neuron centrosome axon

MTOC = Microtubule organizing center g-tubulin specific region of the cortex ((Brinkley, B. R.

MTOC = Microtubule organizing center g-tubulin specific region of the cortex ((Brinkley, B. R. Encyclop. Neurosci. 1987, 665) !

Network of microtubuli 24 nm a-b dimer Protofilaments alpha tubulin beta tubulin Fibroblast

Network of microtubuli 24 nm a-b dimer Protofilaments alpha tubulin beta tubulin Fibroblast

! Cilia cilia flagellum Paramecium

! Cilia cilia flagellum Paramecium

! tubulin (13 ill. 11 protofilaments) B A dynein-arms nexin

! tubulin (13 ill. 11 protofilaments) B A dynein-arms nexin

Composition of dynein-arms ATP-independent binding ATP-dependent hydrolysis The arm moves toward the - pole

Composition of dynein-arms ATP-independent binding ATP-dependent hydrolysis The arm moves toward the - pole

The role of dynein arms in beating of cilia Bending „Telescoping” Proteolysis

The role of dynein arms in beating of cilia Bending „Telescoping” Proteolysis

Molecules composing the cilia more than 250 types of molecules 70% a and b

Molecules composing the cilia more than 250 types of molecules 70% a and b tubulin l dynein arms outer - 9 polypeptides - ATP-ase inner – composition varies l radial spokes - 17 polypeptides l

Microtubules of mitotic spindle and kinetochore

Microtubules of mitotic spindle and kinetochore

Arrangement of actin during cell-division

Arrangement of actin during cell-division

Intermedier filaments

Intermedier filaments

Crescentin

Crescentin

Mechanical characterization of cytoskeleton components ! intermedier filament i. e. vimentin deformation microtubule =

Mechanical characterization of cytoskeleton components ! intermedier filament i. e. vimentin deformation microtubule = rupture actin filament force

Role of intermedier filaments ! Buffer against external mechanical stress Tissue specificity Nucleus –

Role of intermedier filaments ! Buffer against external mechanical stress Tissue specificity Nucleus – lamines (lamina fibrosa) Epithel – keratin Connective tissue Muscles Neuroglia } vimentin Neurones - neurofilaments

Structure of intermedier filamentums (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

Structure of intermedier filamentums (Lodish, H. et al. Mol. Cell Biol. 2000, 767)

Domain structures of intermedier filamentums H 2 N- a helical domain keratins vimentin neurofilam.

Domain structures of intermedier filamentums H 2 N- a helical domain keratins vimentin neurofilam. prot. nuclear prot ! -COOH

Intermedier filaments Keratin filaments Vimentin-like filaments ! They DO NOT co-polymerize !

Intermedier filaments Keratin filaments Vimentin-like filaments ! They DO NOT co-polymerize !

Microvilli actin myosin I. ! villin „terminal web” • a rigid bundle composed by

Microvilli actin myosin I. ! villin „terminal web” • a rigid bundle composed by 20 -30 actin mol. s • actin + on the apical part • villin is the linker molecule of actins • „terminal web” = intermedier fil. + spectrin • anchoreb by myosin I. and calmodulin to the surface membrane

SEM structure of microvilli actin bundle linker molecules „terminal web”

SEM structure of microvilli actin bundle linker molecules „terminal web”

Intermedier filaments Glial filaments Neuro-filaments – many cross-linkers – few cross-linkers The number of

Intermedier filaments Glial filaments Neuro-filaments – many cross-linkers – few cross-linkers The number of protein cross-links between the intermedier filaments varies in different tissues

Microtubuli associated proteins (MAP-s)

Microtubuli associated proteins (MAP-s)

Groups of MAP-s • Structural MAP-s - MT-assembly - links to MF and to

Groups of MAP-s • Structural MAP-s - MT-assembly - links to MF and to IF • Motor proteins - sliding on MT • ! Shape and polarity of the cell Membrane transports Enzymes, signal molecules - glycolytic enzymek - kinases Assembly of molecules

Motor-proteins

Motor-proteins

Structure of motor-proteins assoc. motor domain polypeptides motor domain „stalk” assoc. polypeptides Kinesin „stalk”

Structure of motor-proteins assoc. motor domain polypeptides motor domain „stalk” assoc. polypeptides Kinesin „stalk” assoc. polypeptides Myosin Dynein !

Motor proteins - + microtubule heavy chain light chain kinesin dynein

Motor proteins - + microtubule heavy chain light chain kinesin dynein

! kinesin - + dynein c. AMP pigment cells c. AMP

! kinesin - + dynein c. AMP pigment cells c. AMP

! Kinesin ADP ATP ADP-Pi

! Kinesin ADP ATP ADP-Pi

MT-motor proteins and the transported elements (Hirokawa, N. Science 1998, 279: 519

MT-motor proteins and the transported elements (Hirokawa, N. Science 1998, 279: 519

There are other mechanisms over sliding …

There are other mechanisms over sliding …

Locomotion – with spasmoneme of Vorticella

Locomotion – with spasmoneme of Vorticella

! Spasmoneme spring Contracts 40% in few msecs Velocity: 8 cm˛/sec Negative charges Neutralization

! Spasmoneme spring Contracts 40% in few msecs Velocity: 8 cm˛/sec Negative charges Neutralization with Ca 2+

Actin spring in sperm of horseshoe crab Limulus polyphemus acrosome actin bundle • The

Actin spring in sperm of horseshoe crab Limulus polyphemus acrosome actin bundle • The extension does not involve a myosin motor or actin polymerization • The bundle is crystalline in its coiled and uncoiled states !