Part 14 Nonlinear Models 180 Econometric Analysis of
![Part 14: Nonlinear Models [1/80] Econometric Analysis of Panel Data William Greene Department of Part 14: Nonlinear Models [1/80] Econometric Analysis of Panel Data William Greene Department of](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-1.jpg)
![Part 14: Nonlinear Models [2/80] Nonlinear Models o o Nonlinear Models Estimation Theory for Part 14: Nonlinear Models [2/80] Nonlinear Models o o Nonlinear Models Estimation Theory for](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-2.jpg)
![Part 14: Nonlinear Models [3/80] What is a ‘Model? ’ o o o Purely Part 14: Nonlinear Models [3/80] What is a ‘Model? ’ o o o Purely](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-3.jpg)
![Part 14: Nonlinear Models [4/80] What is a Nonlinear Model? o o Model: E[g(y)|x] Part 14: Nonlinear Models [4/80] What is a Nonlinear Model? o o Model: E[g(y)|x]](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-4.jpg)
![Part 14: Nonlinear Models [5/80] What is an Estimator? o o o Point and Part 14: Nonlinear Models [5/80] What is an Estimator? o o o Point and](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-5.jpg)
![Part 14: Nonlinear Models [6/80] Parameters o o Model parameters – features of the Part 14: Nonlinear Models [6/80] Parameters o o Model parameters – features of the](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-6.jpg)
![Part 14: Nonlinear Models [7/80] M Estimation Classical estimation method Part 14: Nonlinear Models [7/80] M Estimation Classical estimation method](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-7.jpg)
![Part 14: Nonlinear Models [8/80] An Analogy Principle for M Estimation Part 14: Nonlinear Models [8/80] An Analogy Principle for M Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-8.jpg)
![Part 14: Nonlinear Models [9/80] Estimation Part 14: Nonlinear Models [9/80] Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-9.jpg)
![Part 14: Nonlinear Models [10/80] (1) The Parameters Are Identified Part 14: Nonlinear Models [10/80] (1) The Parameters Are Identified](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-10.jpg)
![Part 14: Nonlinear Models [11/80] (2) Continuity of the Criterion Part 14: Nonlinear Models [11/80] (2) Continuity of the Criterion](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-11.jpg)
![Part 14: Nonlinear Models [12/80] Consistency Part 14: Nonlinear Models [12/80] Consistency](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-12.jpg)
![Part 14: Nonlinear Models [13/80] Asymptotic Normality of M Estimators Part 14: Nonlinear Models [13/80] Asymptotic Normality of M Estimators](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-13.jpg)
![Part 14: Nonlinear Models [14/80] Estimating the Asymptotic Variance Part 14: Nonlinear Models [14/80] Estimating the Asymptotic Variance](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-14.jpg)
![Part 14: Nonlinear Models [15/80] Nonlinear Least Squares Part 14: Nonlinear Models [15/80] Nonlinear Least Squares](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-15.jpg)
![Part 14: Nonlinear Models [16/80] Application - Income German Health Care Usage Data, 7, Part 14: Nonlinear Models [16/80] Application - Income German Health Care Usage Data, 7,](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-16.jpg)
![Part 14: Nonlinear Models [17/80] Income Data Part 14: Nonlinear Models [17/80] Income Data](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-17.jpg)
![Part 14: Nonlinear Models [18/80] Exponential Model Part 14: Nonlinear Models [18/80] Exponential Model](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-18.jpg)
![Part 14: Nonlinear Models [19/80] Conventional Variance Estimator Part 14: Nonlinear Models [19/80] Conventional Variance Estimator](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-19.jpg)
![Part 14: Nonlinear Models [20/80] Variance Estimator for the M Estimator Part 14: Nonlinear Models [20/80] Variance Estimator for the M Estimator](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-20.jpg)
![Part 14: Nonlinear Models [21/80] Computing NLS Reject; Calc ; Nlsq ; ; Name Part 14: Nonlinear Models [21/80] Computing NLS Reject; Calc ; Nlsq ; ; Name](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-21.jpg)
![Part 14: Nonlinear Models [22/80] Iterations Part 14: Nonlinear Models [22/80] Iterations](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-22.jpg)
![Part 14: Nonlinear Models [23/80] NLS Estimates with Different Variance Estimators Part 14: Nonlinear Models [23/80] NLS Estimates with Different Variance Estimators](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-23.jpg)
![Part 14: Nonlinear Models [24/80] Hypothesis Tests for M Estimation Part 14: Nonlinear Models [24/80] Hypothesis Tests for M Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-24.jpg)
![Part 14: Nonlinear Models [25/80] Wald Test Part 14: Nonlinear Models [25/80] Wald Test](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-25.jpg)
![Part 14: Nonlinear Models [26/80] Change in the Criterion Function Part 14: Nonlinear Models [26/80] Change in the Criterion Function](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-26.jpg)
![Part 14: Nonlinear Models [27/80] Score Test Part 14: Nonlinear Models [27/80] Score Test](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-27.jpg)
![Part 14: Nonlinear Models [28/80] Exponential Model Part 14: Nonlinear Models [28/80] Exponential Model](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-28.jpg)
![Part 14: Nonlinear Models [29/80] Wald Test Calc Nlsq ; b 0=log(xbr(hhninc))$ ; lhs Part 14: Nonlinear Models [29/80] Wald Test Calc Nlsq ; b 0=log(xbr(hhninc))$ ; lhs](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-29.jpg)
![Part 14: Nonlinear Models [30/80] Change in Function Calc ; b 0 = log(xbr(hhninc)) Part 14: Nonlinear Models [30/80] Change in Function Calc ; b 0 = log(xbr(hhninc))](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-30.jpg)
![Part 14: Nonlinear Models [31/80] Constrained Estimation Was 763. 767 Part 14: Nonlinear Models [31/80] Constrained Estimation Was 763. 767](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-31.jpg)
![Part 14: Nonlinear Models [32/80] LM Test Part 14: Nonlinear Models [32/80] LM Test](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-32.jpg)
![Part 14: Nonlinear Models [33/80] LM Test Namelist; Nlsq ; ; ; Create ; Part 14: Nonlinear Models [33/80] LM Test Namelist; Nlsq ; ; ; Create ;](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-33.jpg)
![Part 14: Nonlinear Models [34/80] Maximum Likelihood Estimation o o Fully parametric estimation. Density Part 14: Nonlinear Models [34/80] Maximum Likelihood Estimation o o Fully parametric estimation. Density](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-34.jpg)
![Part 14: Nonlinear Models [35/80] The Likelihood Function Part 14: Nonlinear Models [35/80] The Likelihood Function](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-35.jpg)
![Part 14: Nonlinear Models [36/80] Consistency and Asymptotic Normality of the MLE o o Part 14: Nonlinear Models [36/80] Consistency and Asymptotic Normality of the MLE o o](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-36.jpg)
![Part 14: Nonlinear Models [37/80] Asymptotic Variance of the MLE Part 14: Nonlinear Models [37/80] Asymptotic Variance of the MLE](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-37.jpg)
![Part 14: Nonlinear Models [38/80] The Information Matrix Equality Part 14: Nonlinear Models [38/80] The Information Matrix Equality](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-38.jpg)
![Part 14: Nonlinear Models [39/80] Three Variance Estimators o o o Negative inverse of Part 14: Nonlinear Models [39/80] Three Variance Estimators o o o Negative inverse of](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-39.jpg)
![Part 14: Nonlinear Models [40/80] Asymptotic Efficiency o o M estimator based on the Part 14: Nonlinear Models [40/80] Asymptotic Efficiency o o M estimator based on the](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-40.jpg)
![Part 14: Nonlinear Models [41/80] Invariance Part 14: Nonlinear Models [41/80] Invariance](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-41.jpg)
![Part 14: Nonlinear Models [42/80] Log Likelihood Function Part 14: Nonlinear Models [42/80] Log Likelihood Function](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-42.jpg)
![Part 14: Nonlinear Models [43/80] Application: Exponential Regression – MLE and NLS MLE assumes Part 14: Nonlinear Models [43/80] Application: Exponential Regression – MLE and NLS MLE assumes](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-43.jpg)
![Part 14: Nonlinear Models [44/80] Variance Estimators Part 14: Nonlinear Models [44/80] Variance Estimators](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-44.jpg)
![Part 14: Nonlinear Models [45/80] Three Variance Estimators Part 14: Nonlinear Models [45/80] Three Variance Estimators](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-45.jpg)
![Part 14: Nonlinear Models [46/80] Robust (? ) Estimator Part 14: Nonlinear Models [46/80] Robust (? ) Estimator](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-46.jpg)
![Part 14: Nonlinear Models [47/80] Variance Estimators Loglinear ; Lhs=hhninc; Rhs=x ; Model = Part 14: Nonlinear Models [47/80] Variance Estimators Loglinear ; Lhs=hhninc; Rhs=x ; Model =](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-47.jpg)
![Part 14: Nonlinear Models [48/80] Robust Standard Errors Exponential (Loglinear) Regression Model ----+----------------------------------| Clustered Part 14: Nonlinear Models [48/80] Robust Standard Errors Exponential (Loglinear) Regression Model ----+----------------------------------| Clustered](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-48.jpg)
![Part 14: Nonlinear Models [49/80] Hypothesis Tests o Trinity of tests for nested hypotheses Part 14: Nonlinear Models [49/80] Hypothesis Tests o Trinity of tests for nested hypotheses](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-49.jpg)
![Part 14: Nonlinear Models [50/80] Example Exponential vs. Gamma Exponential: P = 1 P>1 Part 14: Nonlinear Models [50/80] Example Exponential vs. Gamma Exponential: P = 1 P>1](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-50.jpg)
![Part 14: Nonlinear Models [51/80] Log Likelihood Part 14: Nonlinear Models [51/80] Log Likelihood](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-51.jpg)
![Part 14: Nonlinear Models [52/80] Estimated Gamma Model Part 14: Nonlinear Models [52/80] Estimated Gamma Model](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-52.jpg)
![Part 14: Nonlinear Models [53/80] Testing P = 1 o o Wald: W = Part 14: Nonlinear Models [53/80] Testing P = 1 o o Wald: W =](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-53.jpg)
![Part 14: Nonlinear Models [54/80] Derivatives for the LM Test Part 14: Nonlinear Models [54/80] Derivatives for the LM Test](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-54.jpg)
![Part 14: Nonlinear Models [55/80] Score Test Part 14: Nonlinear Models [55/80] Score Test](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-55.jpg)
![Part 14: Nonlinear Models [56/80] Calculated LM Statistic Loglinear ; Lhs = hhninc ; Part 14: Nonlinear Models [56/80] Calculated LM Statistic Loglinear ; Lhs = hhninc ;](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-56.jpg)
![Part 14: Nonlinear Models [57/80] Clustered Data Part 14: Nonlinear Models [57/80] Clustered Data](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-57.jpg)
![Part 14: Nonlinear Models [58/80] Inference with ‘Clustering’ Part 14: Nonlinear Models [58/80] Inference with ‘Clustering’](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-58.jpg)
![Part 14: Nonlinear Models [59/80] Cluster Estimation Part 14: Nonlinear Models [59/80] Cluster Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-59.jpg)
![Part 14: Nonlinear Models [60/80] On Clustering o o The theory is rather loose. Part 14: Nonlinear Models [60/80] On Clustering o o The theory is rather loose.](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-60.jpg)
![Part 14: Nonlinear Models [61/80] ‘Robust’ Estimation o o If the model is misspecified Part 14: Nonlinear Models [61/80] ‘Robust’ Estimation o o If the model is misspecified](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-61.jpg)
![Part 14: Nonlinear Models [62/80] Part 14: Nonlinear Models [62/80]](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-62.jpg)
![Part 14: Nonlinear Models [63/80] From Cameron and Miller: Practitioner’s Guide… Clustering Part 14: Nonlinear Models [63/80] From Cameron and Miller: Practitioner’s Guide… Clustering](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-63.jpg)
![Part 14: Nonlinear Models [64/80] A Concentrated Log Likelihood Part 14: Nonlinear Models [64/80] A Concentrated Log Likelihood](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-64.jpg)
![Part 14: Nonlinear Models [65/80] Normal Linear Regression Part 14: Nonlinear Models [65/80] Normal Linear Regression](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-65.jpg)
![Part 14: Nonlinear Models [66/80] Two Step Estimation and Murphy/Topel Part 14: Nonlinear Models [66/80] Two Step Estimation and Murphy/Topel](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-66.jpg)
![Part 14: Nonlinear Models [67/80] Two Step Estimation Part 14: Nonlinear Models [67/80] Two Step Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-67.jpg)
![Part 14: Nonlinear Models [68/80] Part 14: Nonlinear Models [68/80]](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-68.jpg)
![Part 14: Nonlinear Models [69/80] Murphy-Topel - 1 Part 14: Nonlinear Models [69/80] Murphy-Topel - 1](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-69.jpg)
![Part 14: Nonlinear Models [70/80] Murphy-Topel - 2 Part 14: Nonlinear Models [70/80] Murphy-Topel - 2](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-70.jpg)
![Part 14: Nonlinear Models [71/80] Optimization - Algorithms Part 14: Nonlinear Models [71/80] Optimization - Algorithms](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-71.jpg)
![Part 14: Nonlinear Models [72/80] Optimization Part 14: Nonlinear Models [72/80] Optimization](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-72.jpg)
![Part 14: Nonlinear Models [73/80] Algorithms Part 14: Nonlinear Models [73/80] Algorithms](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-73.jpg)
![Part 14: Nonlinear Models [74/80] Line Search Methods Part 14: Nonlinear Models [74/80] Line Search Methods](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-74.jpg)
![Part 14: Nonlinear Models [75/80] Quasi-Newton Methods Part 14: Nonlinear Models [75/80] Quasi-Newton Methods](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-75.jpg)
![Part 14: Nonlinear Models [76/80] Stopping Rule Part 14: Nonlinear Models [76/80] Stopping Rule](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-76.jpg)
![Part 14: Nonlinear Models [77/80] Start value for constant is log (mean HHNINC) Start Part 14: Nonlinear Models [77/80] Start value for constant is log (mean HHNINC) Start](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-77.jpg)
![Part 14: Nonlinear Models [78/80] Part 14: Nonlinear Models [78/80]](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-78.jpg)
![Part 14: Nonlinear Models [79/80] Part 14: Nonlinear Models [79/80]](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-79.jpg)
![Part 14: Nonlinear Models [80/80] Part 14: Nonlinear Models [80/80]](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-80.jpg)
![Part 14: Nonlinear Models [81/80] Appendix Part 14: Nonlinear Models [81/80] Appendix](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-81.jpg)
![Part 14: Nonlinear Models [82/80] The Conditional Mean Function Part 14: Nonlinear Models [82/80] The Conditional Mean Function](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-82.jpg)
![Part 14: Nonlinear Models [83/80] Asymptotic Normality of M Estimators Part 14: Nonlinear Models [83/80] Asymptotic Normality of M Estimators](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-83.jpg)
![Part 14: Nonlinear Models [84/80] Asymptotic Normality Part 14: Nonlinear Models [84/80] Asymptotic Normality](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-84.jpg)
![Part 14: Nonlinear Models [85/80] Asymptotic Normality Part 14: Nonlinear Models [85/80] Asymptotic Normality](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-85.jpg)
![Part 14: Nonlinear Models [86/80] Asymptotic Variance Part 14: Nonlinear Models [86/80] Asymptotic Variance](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-86.jpg)
![Part 14: Nonlinear Models [87/80] Conditional and Unconditional Likelihood Part 14: Nonlinear Models [87/80] Conditional and Unconditional Likelihood](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-87.jpg)
![Part 14: Nonlinear Models [88/80] Concentrated Log Likelihood Part 14: Nonlinear Models [88/80] Concentrated Log Likelihood](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-88.jpg)
![Part 14: Nonlinear Models [89/80] ‘Regularity’ Conditions for MLE o o o Conditions for Part 14: Nonlinear Models [89/80] ‘Regularity’ Conditions for MLE o o o Conditions for](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-89.jpg)
![Part 14: Nonlinear Models [90/80] GMM Estimation Part 14: Nonlinear Models [90/80] GMM Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-90.jpg)
![Part 14: Nonlinear Models [91/80] GMM Estimation-1 o o GMM is broader than M Part 14: Nonlinear Models [91/80] GMM Estimation-1 o o GMM is broader than M](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-91.jpg)
![Part 14: Nonlinear Models [92/80] GMM Estimation - 2 Part 14: Nonlinear Models [92/80] GMM Estimation - 2](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-92.jpg)
![Part 14: Nonlinear Models [93/80] ML and M Estimation Part 14: Nonlinear Models [93/80] ML and M Estimation](https://slidetodoc.com/presentation_image/4363b1050ded5b300e01ac7a2c91d819/image-93.jpg)
- Slides: 93
Part 14: Nonlinear Models [1/80] Econometric Analysis of Panel Data William Greene Department of Economics University of South Florida
Part 14: Nonlinear Models [2/80] Nonlinear Models o o Nonlinear Models Estimation Theory for Nonlinear Models n n n Estimators Properties M Estimation o o n GMM Estimation o o o Minimum Distance Estimation Minimum Chi-square Estimation Computation – Nonlinear Optimization n n o Nonlinear Least Squares Maximum Likelihood Estimation Nonlinear Least Squares Newton-like Algorithms; Gradient Methods (Background: JW, Chapters 12 -14, Greene, Chapters 12 -14, App. E)
Part 14: Nonlinear Models [3/80] What is a ‘Model? ’ o o o Purely verbal description of a phenomenon Unconditional ‘characteristics’ of a population Conditional moments: E[g(y)|x]: median, mean, variance, quantile, correlations, probabilities… Conditional probabilities and densities Conditional means and regressions Fully parametric and semiparametric specifications n n n Parametric specification: Known up to parameter θ Parameter spaces Conditional means: E[y|x] = m(x, θ)
Part 14: Nonlinear Models [4/80] What is a Nonlinear Model? o o Model: E[g(y)|x] = m(x, θ) Objective: n n o o Learn about θ from y, X Usually “estimate” θ Linear Model: Closed form; = h(y, X) Nonlinear Model: “Any model that is not linear” n n Not wrt m(x, θ). E. g. , y=exp(θ’x + ε) Wrt estimator: Implicitly defined. h(y, X, E[y|x]= exp(θ’x) )=0, E. g. ,
Part 14: Nonlinear Models [5/80] What is an Estimator? o o o Point and Interval Set estimation: some subset of RK Classical and Bayesian
Part 14: Nonlinear Models [6/80] Parameters o o Model parameters – features of the population The “true” parameter(s)
Part 14: Nonlinear Models [7/80] M Estimation Classical estimation method
Part 14: Nonlinear Models [8/80] An Analogy Principle for M Estimation
Part 14: Nonlinear Models [9/80] Estimation
Part 14: Nonlinear Models [10/80] (1) The Parameters Are Identified
Part 14: Nonlinear Models [11/80] (2) Continuity of the Criterion
Part 14: Nonlinear Models [12/80] Consistency
Part 14: Nonlinear Models [13/80] Asymptotic Normality of M Estimators
Part 14: Nonlinear Models [14/80] Estimating the Asymptotic Variance
Part 14: Nonlinear Models [15/80] Nonlinear Least Squares
Part 14: Nonlinear Models [16/80] Application - Income German Health Care Usage Data, 7, 293 Individuals, Varying Numbers of Periods Variables in the file are Data downloaded from Journal of Applied Econometrics Archive. This is an unbalanced panel with 7, 293 individuals. They can be used for regression, count models, binary choice, ordered choice, and bivariate binary choice. This is a large data set. There altogether 27, 326 observations. The number of observations ranges from 1 to 7. (Frequencies are: 1=1525, 2=2158, 3=825, 4=926, 5=1051, 6=1000, 7=987). HHNINC = household nominal monthly net income in German marks / 10000. (4 observations with income=0 were dropped) HHKIDS = children under age 16 in the household = 1; otherwise = 0 EDUC = years of schooling AGE = age in years
Part 14: Nonlinear Models [17/80] Income Data
Part 14: Nonlinear Models [18/80] Exponential Model
Part 14: Nonlinear Models [19/80] Conventional Variance Estimator
Part 14: Nonlinear Models [20/80] Variance Estimator for the M Estimator
Part 14: Nonlinear Models [21/80] Computing NLS Reject; Calc ; Nlsq ; ; Name ; Create; ; Matrix; hhninc=0$ b 0=log(xbr(hhninc))$ lhs = hhninc fcn = exp(a 0+a 1*educ+a 2*married+a 3*age) start = b 0, 0, 0, 0 labels = a 0, a 1, a 2, a 3$ x = one, educ, married, age$ thetai = exp(x'b); ei = hhninc-thetai gi=ei*thetai ; hi = thetai*thetai$ var. M = <x'[hi] x> * x'[gi^2]x * <x'[hi] x> $ stat(b, varm, x)$
Part 14: Nonlinear Models [22/80] Iterations
Part 14: Nonlinear Models [23/80] NLS Estimates with Different Variance Estimators
Part 14: Nonlinear Models [24/80] Hypothesis Tests for M Estimation
Part 14: Nonlinear Models [25/80] Wald Test
Part 14: Nonlinear Models [26/80] Change in the Criterion Function
Part 14: Nonlinear Models [27/80] Score Test
Part 14: Nonlinear Models [28/80] Exponential Model
Part 14: Nonlinear Models [29/80] Wald Test Calc Nlsq ; b 0=log(xbr(hhninc))$ ; lhs = hhninc ; fcn = exp(a 0+a 1*educ+a 2*married+a 3*age) ; start = b 0, 0, 0, 0 ; labels = a 0, a 1, a 2, a 3$ Matrix ; List ; R = [0, 1, 0, 0 / 0, 0, 1, 0 / 0, 0, 0, 1] ; c = R*b ; Vc = R*Varb*R’ ; Wald = c’ <VC> c $ Matrix R has 3 rows and 4 columns. 0. 00000 1. 00000 0. 000000 1. 00000 0. 000000 0. 00000 1. 00000 Matrix C has 3 rows and 1 columns. 0. 05471 0. 23761 0. 00081 Matrix VC has 3 rows and 3 columns. . 1053686 D-05. 4530603 D-06. 3649631 D-07. 4530603 D-06. 5859546 D-04 -. 3565863 D-06. 3649631 D-07 -. 3565863 D-06. 6940296 D-07 Matrix WALD = 3627. 17514
Part 14: Nonlinear Models [30/80] Change in Function Calc ; b 0 = log(xbr(hhninc)) $ Nlsq ; lhs = hhninc ; labels = a 0, a 1, a 2, a 3 ; start = b 0, 0, 0, 0 ; fcn = exp(a 0+a 1*educ+a 2*married+a 3*age)$ Calc ; qbar = sumsqdev/n $ Nlsq ; lhs = hhninc ; labels = a 0, a 1, a 2, a 3 ; start = b 0, 0, 0, 0 ; fix = a 1, a 2, a 3 ; fcn = exp(a 0+a 1*educ+a 2*married+a 3*age)$ Calc ; qbar 0 = sumsqdev/n $ Calc ; cm = 2*n*(qbar 0 – qbar) $ (Sumsqdev = 763. 767; Sumsqdev_0 = 854. 682) 2(854. 682 – 763. 767) = 181. 83
Part 14: Nonlinear Models [31/80] Constrained Estimation Was 763. 767
Part 14: Nonlinear Models [32/80] LM Test
Part 14: Nonlinear Models [33/80] LM Test Namelist; Nlsq ; ; ; Create ; Matrix ; ; Matrix LM x = one, educ, married, age$ lhs = hhninc ; labels = a 0, a 1, a 2, a 3 start = b 0, 0, 0, 0 ; fix = a 1, a 2, a 3 fcn = exp(a 0+a 1*educ+a 2*married+a 3*age)$ thetai = exp(x'b) ei = hhninc - thetai$ gi = ei*thetai ; gi 2 = gi*gi $ list LM = gi’x * <x'[gi 2]x> * x’gi $ 1 +-------1| 1915. 03286
Part 14: Nonlinear Models [34/80] Maximum Likelihood Estimation o o Fully parametric estimation. Density of yi is fully specified The likelihood function = the joint density of the observed random variables. Example: density for the exponential model
Part 14: Nonlinear Models [35/80] The Likelihood Function
Part 14: Nonlinear Models [36/80] Consistency and Asymptotic Normality of the MLE o o o Conditions are identical to those for M estimation Terms in proofs are log density and its derivatives Nothing new is needed. n Law of large numbers n Lindberg-Feller central limit theorem applies to derivatives of the log likelihood.
Part 14: Nonlinear Models [37/80] Asymptotic Variance of the MLE
Part 14: Nonlinear Models [38/80] The Information Matrix Equality
Part 14: Nonlinear Models [39/80] Three Variance Estimators o o o Negative inverse of expected second derivatives matrix. (Usually not known) Negative inverse of actual second derivatives matrix. Inverse of variance of first derivatives
Part 14: Nonlinear Models [40/80] Asymptotic Efficiency o o M estimator based on the conditional mean is semiparametric. Not necessarily efficient. MLE is fully parametric. It is efficient among all consistent and asymptotically normal estimators when the density is as specified. This is the Cramer-Rao bound. Note the implied comparison to nonlinear least squares for the exponential regression model.
Part 14: Nonlinear Models [41/80] Invariance
Part 14: Nonlinear Models [42/80] Log Likelihood Function
Part 14: Nonlinear Models [43/80] Application: Exponential Regression – MLE and NLS MLE assumes E[y|x] = exp(-β′x) – Note sign reversal.
Part 14: Nonlinear Models [44/80] Variance Estimators
Part 14: Nonlinear Models [45/80] Three Variance Estimators
Part 14: Nonlinear Models [46/80] Robust (? ) Estimator
Part 14: Nonlinear Models [47/80] Variance Estimators Loglinear ; Lhs=hhninc; Rhs=x ; Model = Exponential create; thetai=exp(x'b); hi=hhninc*thetai; gi 2=(hi-1)^2$ matr; he=<x'x>; ha=<x'[hi]x>; bhhh=<x'[gi 2]x>$ matr; stat(b, ha); stat(b, he); stat(b, bhhh)$
Part 14: Nonlinear Models [48/80] Robust Standard Errors Exponential (Loglinear) Regression Model ----+----------------------------------| Clustered Prob. 95% Confidence INCOME| Coefficient Std. Error z |z|>Z* Interval ----+----------------------------------|Parameters in conditional mean function. . . . Constant| -1. 82539***. 02113 -86. 37. 0000 -1. 86681 -1. 78397 EDUC|. 05544***. 00126 43. 90. 0000. 05296. 05791 MARRIED|. 23666***. 00833 28. 40. 0000. 22033. 25299 AGE| -. 00087***. 00027 -3. 20. 0014 -. 00141 -. 00034 ----+----------------------------------NOTICE: The standard errors go down. . . Standard errors clustered on Fixed (27326 clusters)
Part 14: Nonlinear Models [49/80] Hypothesis Tests o Trinity of tests for nested hypotheses n n n o Wald Likelihood ratio Lagrange multiplier All as defined for the M estimators
Part 14: Nonlinear Models [50/80] Example Exponential vs. Gamma Exponential: P = 1 P>1
Part 14: Nonlinear Models [51/80] Log Likelihood
Part 14: Nonlinear Models [52/80] Estimated Gamma Model
Part 14: Nonlinear Models [53/80] Testing P = 1 o o Wald: W = (5. 10591 -1)2/. 042332 = 9408. 5 Likelihood Ratio: n n n o ln. L|(P=1)= 1539. 31 ln. L|P = 14240. 74 LR = 2(14240. 74 - 1539. 31)=25402. 86 Lagrange Multiplier…
Part 14: Nonlinear Models [54/80] Derivatives for the LM Test
Part 14: Nonlinear Models [55/80] Score Test
Part 14: Nonlinear Models [56/80] Calculated LM Statistic Loglinear ; Lhs = hhninc ; Rhs = x ; Model = Exponential $ Create; thetai=exp(x’b) ; gi=(hhninc*thetai – 1) $ Create; gpi=log(hhninc*thetai)-psi(1)$ Create; g 1 i=gi; g 2 i=gi*educ; g 3 i=gi*married; g 4 i=gi*age; g 5 i=gpi$ Namelist; ggi=g 1 i, g 2 i, g 3 i, g 4 i, g 5 i$ Matrix; list ; lm = 1'ggi * <ggi'ggi> * ggi'1 $ Matrix LM has 1 rows and 1 columns. 1 +-------1| 23468. 7 ? Use built-in procedure. ? LM is computed with actual Hessian instead of BHHH Loglinear ; Lhs = hhninc ; Rhs = x ; Model = Exponential $ logl; lhs=hhninc; rhs=x; model=gamma; start=b, 1; maxit=0 $ | LM Stat. at start values 9604. 33 |
Part 14: Nonlinear Models [57/80] Clustered Data
Part 14: Nonlinear Models [58/80] Inference with ‘Clustering’
Part 14: Nonlinear Models [59/80] Cluster Estimation
Part 14: Nonlinear Models [60/80] On Clustering o o The theory is rather loose. That the marginals would be correctly specified while there is ‘correlation’ across observations is ambiguous It seems to work pretty well in practice (anyway) BUT… It does not imply that one can safely just pool the observations in a panel and ignore unobserved common effects.
Part 14: Nonlinear Models [61/80] ‘Robust’ Estimation o o If the model is misspecified in some way, then the information matrix equality does not hold. Assuming the estimator remains consistent, the appropriate asymptotic covariance matrix would be the ‘robust’ matrix, actually, the original one,
Part 14: Nonlinear Models [62/80]
Part 14: Nonlinear Models [63/80] From Cameron and Miller: Practitioner’s Guide… Clustering
Part 14: Nonlinear Models [64/80] A Concentrated Log Likelihood
Part 14: Nonlinear Models [65/80] Normal Linear Regression
Part 14: Nonlinear Models [66/80] Two Step Estimation and Murphy/Topel
Part 14: Nonlinear Models [67/80] Two Step Estimation
Part 14: Nonlinear Models [68/80]
Part 14: Nonlinear Models [69/80] Murphy-Topel - 1
Part 14: Nonlinear Models [70/80] Murphy-Topel - 2
Part 14: Nonlinear Models [71/80] Optimization - Algorithms
Part 14: Nonlinear Models [72/80] Optimization
Part 14: Nonlinear Models [73/80] Algorithms
Part 14: Nonlinear Models [74/80] Line Search Methods
Part 14: Nonlinear Models [75/80] Quasi-Newton Methods
Part 14: Nonlinear Models [76/80] Stopping Rule
Part 14: Nonlinear Models [77/80] Start value for constant is log (mean HHNINC) Start value for P is 1 => exponential model.
Part 14: Nonlinear Models [78/80]
Part 14: Nonlinear Models [79/80]
Part 14: Nonlinear Models [80/80]
Part 14: Nonlinear Models [81/80] Appendix
Part 14: Nonlinear Models [82/80] The Conditional Mean Function
Part 14: Nonlinear Models [83/80] Asymptotic Normality of M Estimators
Part 14: Nonlinear Models [84/80] Asymptotic Normality
Part 14: Nonlinear Models [85/80] Asymptotic Normality
Part 14: Nonlinear Models [86/80] Asymptotic Variance
Part 14: Nonlinear Models [87/80] Conditional and Unconditional Likelihood
Part 14: Nonlinear Models [88/80] Concentrated Log Likelihood
Part 14: Nonlinear Models [89/80] ‘Regularity’ Conditions for MLE o o o Conditions for the MLE to be consistent, etc. Augment the continuity and identification conditions for M estimation Regularity: n n n o Three times continuous differentiability of the log density Finite third moments of log density Conditions needed to obtain expected values of derivatives of log density are met. (See Greene (Chapter 14))
Part 14: Nonlinear Models [90/80] GMM Estimation
Part 14: Nonlinear Models [91/80] GMM Estimation-1 o o GMM is broader than M estimation and ML estimation Both M and ML are GMM estimators.
Part 14: Nonlinear Models [92/80] GMM Estimation - 2
Part 14: Nonlinear Models [93/80] ML and M Estimation