Chapter 8 SemiSupervised Learning Also called partially supervised

  • Slides: 58
Download presentation
Chapter 8: Semi-Supervised Learning Also called “partially supervised learning” Bing Liu CS Department, UIC

Chapter 8: Semi-Supervised Learning Also called “partially supervised learning” Bing Liu CS Department, UIC 1

Outline n n Fully supervised learning (traditional classification) Partially (semi-) supervised learning (or classification)

Outline n n Fully supervised learning (traditional classification) Partially (semi-) supervised learning (or classification) n n Learning with a small set of labeled examples and a large set of unlabeled examples Learning with positive and unlabeled examples (no labeled negative examples). Bing Liu CS Department, UIC 2

Fully Supervised Learning Bing Liu CS Department, UIC 3

Fully Supervised Learning Bing Liu CS Department, UIC 3

The learning task n n Data: It has k attributes A 1, … Ak.

The learning task n n Data: It has k attributes A 1, … Ak. Each tuple (example) is described by values of the attributes and a class label. Goal: To learn rules or to build a model that can be used to predict the classes of new (or future or test) cases. The data used for building the model is called the training data. Fully supervised learning: have a sufficiently large set of labelled training examples (or data), no unlabeled data used in learning. Bing Liu CS Department, UIC 4

Classification —A two-step process n Model construction: describing a set of predetermined classes based

Classification —A two-step process n Model construction: describing a set of predetermined classes based on a training set. It is also called learning. n n n Each tuple/example is assumed to belong to a predefined class The model is represented as classification rules, decision trees, or mathematical formulae Model usage: for classifying future test data/objects n n Estimate accuracy of the model n The known label of test example is compared with the classified result from the model n Accuracy rate is the % of test cases that are correctly classified by the model If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known. Bing Liu CS Department, UIC 5

Classification Process (1): Model Construction Classification Algorithms Training Data Classifier (Model) IF rank =

Classification Process (1): Model Construction Classification Algorithms Training Data Classifier (Model) IF rank = ‘professor’ OR years > 6 THEN tenured = ‘yes’ Bing Liu CS Department, UIC 6

Classification Process (2): Use the Model in Prediction Classifier Testing Data Unseen Data (Jeff,

Classification Process (2): Use the Model in Prediction Classifier Testing Data Unseen Data (Jeff, Professor, 4) Tenured? Bing Liu CS Department, UIC 7

Evaluating Classification Methods n n Predictive accuracy Speed and scalability n n n time

Evaluating Classification Methods n n Predictive accuracy Speed and scalability n n n time to construct the model time to use the model Robustness: handling noise and missing values Scalability: efficiency in disk-resident databases Interpretability: Compactness of the model: size of the tree, or the number of rules. Bing Liu CS Department, UIC 8

Different classification techniques n There are many techniques for classification n n n Decision

Different classification techniques n There are many techniques for classification n n n Decision trees Naïve Bayesian classifiers Support vector machines Classification based on association rules Neural networks Logistic regression and many more. . . Bing Liu CS Department, UIC 9

Partially (Semi-) Supervised Learning from a small labeled set and a large unlabeled set

Partially (Semi-) Supervised Learning from a small labeled set and a large unlabeled set Bing Liu CS Department, UIC 10

Unlabeled Data n One of the bottlenecks of classification is the labeling of a

Unlabeled Data n One of the bottlenecks of classification is the labeling of a large set of examples (data records or text documents). n n Often done manually Time consuming Can we label only a small number of examples and make use of a large number of unlabeled examples to learn? Possible in many cases. Bing Liu CS Department, UIC 11

Why unlabeled data are useful? n n n Unlabeled data are usually plentiful, labeled

Why unlabeled data are useful? n n n Unlabeled data are usually plentiful, labeled data are expensive. Unlabeled data provide information about the joint probability distribution over words and collocations (in texts). We will use text classification to study this problem. Bing Liu CS Department, UIC 12

Bing Liu CS Department, UIC 13

Bing Liu CS Department, UIC 13

Probabilistic Framework n Two assumptions n n The data are produced by a mixture

Probabilistic Framework n Two assumptions n n The data are produced by a mixture model, There is a one-to-one correspondence between mixture components and classes Bing Liu CS Department, UIC 14

Generative Model n Generating a document n n n Step 1. Selecting a mixture

Generative Model n Generating a document n n n Step 1. Selecting a mixture component according to the mixture weight Step 2. Having the selected mixture component generates a document according to its own distribution Step 3, The likelihood of a document is Bing Liu CS Department, UIC 15

Naïve Bayes Classification Naïve Bayes Model n n n Vocabulary: is a word in

Naïve Bayes Classification Naïve Bayes Model n n n Vocabulary: is a word in the vocabulary Document: is a word in position j of document i Two more assumptions: a. b. n Word independence Document length independence Multinomial Model: The generative model accounts for number of times a word appears in a document Bing Liu CS Department, UIC 16

Naïve Bayes Classification Training: Classifier building (learning) Laplace Smoothing Bing Liu CS Department, UIC

Naïve Bayes Classification Training: Classifier building (learning) Laplace Smoothing Bing Liu CS Department, UIC 17

Naïve Bayes Classification Using the classifier Bing Liu CS Department, UIC 18

Naïve Bayes Classification Using the classifier Bing Liu CS Department, UIC 18

How to use unlabeled data n One way is to use the EM algorithm

How to use unlabeled data n One way is to use the EM algorithm n n n EM: Expectation Maximization The EM algorithm is a popular iterative algorithm for maximum likelihood estimation in problems with missing data. The EM algorithm consists of two steps, n n Expectation step, i. e. , filling in the missing data Maximization step – calculate a new maximum a posteriori estimate for the parameters. Bing Liu CS Department, UIC 19

Incorporating unlabeled Data with EM (Nigam et al, 2000) n n n Basic EM

Incorporating unlabeled Data with EM (Nigam et al, 2000) n n n Basic EM Augmented EM with weighted unlabeled data Augmented EM with multiple mixture components per class Bing Liu CS Department, UIC 20

Algorithm Outline 1. 2. 3. 4. Train a classifier with only the labeled documents.

Algorithm Outline 1. 2. 3. 4. Train a classifier with only the labeled documents. Use it to probabilistically classify the unlabeled documents. Use ALL the documents to train a new classifier. Iterate steps 2 and 3 to convergence. Bing Liu CS Department, UIC 21

Basic Algorithm Bing Liu CS Department, UIC 22

Basic Algorithm Bing Liu CS Department, UIC 22

Basic EM: E Step & M Step E Step: M Step: Bing Liu CS

Basic EM: E Step & M Step E Step: M Step: Bing Liu CS Department, UIC 23

Weighting the influence of unlabeled examples by factor l New M step: Bing Liu

Weighting the influence of unlabeled examples by factor l New M step: Bing Liu CS Department, UIC 24

Experimental Evaluation n Newsgroup postings n n Web page classification n 20 newsgroups, 1000/group

Experimental Evaluation n Newsgroup postings n n Web page classification n 20 newsgroups, 1000/group student, faculty, course, project 4199 web pages Reuters newswire articles n n 12, 902 articles 10 main topic categories Bing Liu CS Department, UIC 25

20 Newsgroups Bing Liu CS Department, UIC 26

20 Newsgroups Bing Liu CS Department, UIC 26

20 Newsgroups Bing Liu CS Department, UIC 27

20 Newsgroups Bing Liu CS Department, UIC 27

Another approach: Co-training n n n Again, learning with a small labeled set and

Another approach: Co-training n n n Again, learning with a small labeled set and a large unlabeled set. The attributes describing each example or instance can be partitioned into two subsets. Each of them is sufficient for learning the target function. E. g. , hyperlinks and page contents in Web page classification. Two classifiers can be learned from the same data. Bing Liu CS Department, UIC 28

Co-training Algorithm [Blum and Mitchell, 1998] Given: labeled data L, unlabeled data U Loop:

Co-training Algorithm [Blum and Mitchell, 1998] Given: labeled data L, unlabeled data U Loop: Train h 1 (hyperlink classifier) using L Train h 2 (page classifier) using L Allow h 1 to label p positive, n negative examples from U Allow h 2 to label p positive, n negative examples from U Add these most confident self-labeled examples to L Bing Liu CS Department, UIC 29

Co-training: Experimental Results n n begin with 12 labeled web pages (academic course) provide

Co-training: Experimental Results n n begin with 12 labeled web pages (academic course) provide 1, 000 additional unlabeled web pages average error: learning from labeled data 11. 1%; average error: co-training 5. 0% Supervised training Co-training Bing Liu Page-base classifier Link-based classifier Combined classifier 12. 9 12. 4 11. 1 6. 2 11. 6 5. 0 CS Department, UIC 30

When the generative model is not suitable n n Multiple Mixture Components per Class

When the generative model is not suitable n n Multiple Mixture Components per Class (M-EM). E. g. , a class --- a number of sub-topics or clusters. Results of an example using 20 newsgroup data n n 40 labeled; 2360 unlabeled; 1600 test Accuracy n n n NB 68% EM 59. 6% Solutions n n M-EM (Nigam et al, 2000): Cross-validation on the training data to determine the number of components. Partitioned-EM (Cong, et al, 2004): using hierarchical clustering. It does significantly better than M-EM. Bing Liu CS Department, UIC 31

Summary n n n Using unlabeled data can improve the accuracy of classifier when

Summary n n n Using unlabeled data can improve the accuracy of classifier when the data fits the generative model. Partitioned EM and the EM classifier based on multiple mixture components model (M-EM) are more suitable for real data when multiple mixture components are in one class. Co-training is another effective technique when redundantly sufficient features are available. Bing Liu CS Department, UIC 32

Partially (Semi-) Supervised Learning from positive and unlabeled examples Bing Liu CS Department, UIC

Partially (Semi-) Supervised Learning from positive and unlabeled examples Bing Liu CS Department, UIC 33

Learning from Positive & Unlabeled data (PU-learning) n Positive examples: One has a set

Learning from Positive & Unlabeled data (PU-learning) n Positive examples: One has a set of examples of a class P, and n Unlabeled set: also has a set U of unlabeled (or n Build a classifier: Build a classifier to classify the n n mixed) examples with instances from P and also not from P (negative examples). examples in U and/or future (test) data. Key feature of the problem: no labeled negative training data. We call this problem, PU-learning. Bing Liu CS Department, UIC 34

Applications of the problem n n With the growing volume of online texts available

Applications of the problem n n With the growing volume of online texts available through the Web and digital libraries, one often wants to find those documents that are related to one's work or one's interest. For example, given a ICML proceedings, n n n find all machine learning papers from AAAI, IJCAI, KDD No labeling of negative examples from each of these collections. Similarly, given one's bookmarks (positive documents), identify those documents that are of interest to him/her from Web sources. Bing Liu CS Department, UIC 35

Direct Marketing n n n Company has database with details of its customer –

Direct Marketing n n n Company has database with details of its customer – positive examples, but no information on those who are not their customers, i. e. , no negative examples. Want to find people who are similar to their customers for marketing Buy a database consisting of details of people, some of whom may be potential customers – unlabeled examples. Bing Liu CS Department, UIC 36

Are Unlabeled Examples Helpful? x 1 < 0 n ++u + u +u +

Are Unlabeled Examples Helpful? x 1 < 0 n ++u + u +u + + ++ + uu u u uu uu Bing Liu n x 2 > 0 Function known to be either x 1 < 0 or x 2 > 0 Which one is it? “Not learnable” with only positive examples. However, addition of unlabeled examples makes it learnable. CS Department, UIC 37

Theoretical foundations (Liu et al 2002) n n n (X, Y): X - input

Theoretical foundations (Liu et al 2002) n n n (X, Y): X - input vector, Y {1, -1} - class label. f : classification function We rewrite the probability of error Pr[f(X) Y] = Pr[f(X) = 1 and Y = -1] + Pr[f(X) = -1 and Y = 1] (1) We have Pr[f(X) = 1 and Y = -1] = Pr[f(X) = 1] – Pr[f(X) = 1 and Y = 1] = Pr[f(X) = 1] – (Pr[Y = 1] – Pr[f(X) = -1 and Y = 1]). Plug this into (1), we obtain Pr[f(X) Y] = Pr[f(X) = 1] – Pr[Y = 1] (2) + 2 Pr[f(X) = -1|Y = 1]Pr[Y = 1] Bing Liu CS Department, UIC 38

Theoretical foundations (cont) n n Pr[f(X) Y] = Pr[f(X) = 1] – Pr[Y =

Theoretical foundations (cont) n n Pr[f(X) Y] = Pr[f(X) = 1] – Pr[Y = 1] (2) + 2 Pr[f(X) = -1|Y = 1] Pr[Y = 1] Note that Pr[Y = 1] is constant. If we can hold Pr[f(X) = -1|Y = 1] small, then learning is approximately the same as minimizing Pr[f(X) = 1]. Holding Pr[f(X) = -1|Y = 1] small while minimizing Pr[f(X) = 1] is approximately the same as n n n minimizing Pru[f(X) = 1] while holding Pr. P[f(X) = 1] ≥ r (where r is recall Pr[f(X)=1| Y=1]) which is the same as (Prp[f(X) = -1] ≤ 1 – r) if the set of positive examples P and the set of unlabeled examples U are large enough. Theorem 1 and Theorem 2 in [Liu et al 2002] state these formally in the noiseless case and in the noisy case. Bing Liu CS Department, UIC 39

Put it simply n n A constrained optimization problem. A reasonably good generalization (learning)

Put it simply n n A constrained optimization problem. A reasonably good generalization (learning) result can be achieved n n If the algorithm tries to minimize the number of unlabeled examples labeled as positive subject to the constraint that the fraction of errors on the positive examples is no more than 1 -r. Bing Liu CS Department, UIC 40

Existing 2 -step strategy n Step 1: Identifying a set of reliable negative documents

Existing 2 -step strategy n Step 1: Identifying a set of reliable negative documents from the unlabeled set. n n S-EM [Liu et al, 2002] uses a Spy technique, PEBL [Yu et al, 2002] uses a 1 -DNF technique Roc-SVM [Li & Liu, 2003] uses the Rocchio algorithm. Step 2: Building a sequence of classifiers by iteratively applying a classification algorithm and then selecting a good classifier. n n n S-EM uses the Expectation Maximization (EM) algorithm, with an error based classifier selection mechanism PEBL uses SVM, and gives the classifier at convergence. I. e. , no classifier selection. Roc-SVM uses SVM with a heuristic method for selecting the final classifier. Bing Liu CS Department, UIC 41

Step 1 positive Step 2 negative Reliable Negative (RN) U positive P Bing Liu

Step 1 positive Step 2 negative Reliable Negative (RN) U positive P Bing Liu Using P, RN and Q to build the final classifier iteratively or Q =U - RN Using only P and RN to build a classifier CS Department, UIC 42

Step 1: The Spy technique n n Sample a certain % of positive examples

Step 1: The Spy technique n n Sample a certain % of positive examples and put them into unlabeled set to act as “spies”. Run a classification algorithm assuming all unlabeled examples are negative, n n we will know the behavior of those actual positive examples in the unlabeled set through the “spies”. We can then extract reliable negative examples from the unlabeled set more accurately. Bing Liu CS Department, UIC 43

Step 1: Other methods n 1 -DNF method: n n Find the set of

Step 1: Other methods n 1 -DNF method: n n Find the set of words W that occur in the positive documents more frequently than in the unlabeled set. Extract those documents from unlabeled set that do not contain any word in W. These documents form the reliable negative documents. n Rocchio method from information retrieval. n Naïve Bayesian method. Bing Liu CS Department, UIC 44

Step 2: Running EM or SVM iteratively (1) Running a classification algorithm iteratively n

Step 2: Running EM or SVM iteratively (1) Running a classification algorithm iteratively n n n Run EM using P, RN and Q until it converges, or Run SVM iteratively using P, RN and Q until this no document from Q can be classified as negative. RN and Q are updated in each iteration, or … (2) Classifier selection. Bing Liu CS Department, UIC 45

Do they follow theory? n Yes, heuristic methods because n n n Step 1

Do they follow theory? n Yes, heuristic methods because n n n Step 1 tries to find some initial reliable negative examples from the unlabeled set. Step 2 tried to identify more and more negative examples iteratively. The two steps together form an iterative strategy of increasing the number of unlabeled examples that are classified as negative while maintaining the positive examples correctly classified. Bing Liu CS Department, UIC 46

Can SVM be applied directly? n n n Can we use SVM to directly

Can SVM be applied directly? n n n Can we use SVM to directly deal with the problem of learning with positive and unlabeled examples, without using two steps? Yes, with a little re-formulation. Note: (Lee and Liu 2003) gives a weighted logistic regression approach. Bing Liu CS Department, UIC 47

Support Vector Machines n n n Support vector machines (SVM) are linear functions of

Support Vector Machines n n n Support vector machines (SVM) are linear functions of the form f(x) = w. Tx + b, where w is the weight vector and x is the input vector. Let the set of training examples be {(x 1, y 1), (x 2, y 2), …, (xn, yn)}, where xi is an input vector and yi is its class label, yi {1, -1}. To find the linear function: Minimize: Subject to: Bing Liu CS Department, UIC 48

Soft margin SVM n To deal with cases where there may be no separating

Soft margin SVM n To deal with cases where there may be no separating hyperplane due to noisy labels of both positive and negative training examples, the soft margin SVM is proposed: Minimize: Subject to: where C 0 is a parameter that controls the amount of training errors allowed. Bing Liu CS Department, UIC 49

Biased SVM (noiseless case) (Liu et al 2003) n Assume that the first k-1

Biased SVM (noiseless case) (Liu et al 2003) n Assume that the first k-1 examples are positive examples (labeled 1), while the rest are unlabeled examples, which we label negative (-1). Minimize: Subject to: i 0, i = k, k+1…, n Bing Liu CS Department, UIC 50

Biased SVM (noisy case) n If we also allow positive set to have some

Biased SVM (noisy case) n If we also allow positive set to have some noisy negative examples, then we have: Minimize: Subject to: i 0, i = 1, 2, …, n. n This turns out to be the same as the asymmetric cost SVM for dealing with unbalanced data. Of course, we have a different motivation. Bing Liu CS Department, UIC 51

Estimating performance n n We need to estimate the performance in order to select

Estimating performance n n We need to estimate the performance in order to select the parameters. Since learning from positive and negative examples often arise in retrieval situations, we use F score as the classification performance measure F = 2 pr / (p+r) (p: precision, r: recall). To get a high F score, both precision and recall have to be high. However, without labeled negative examples, we do not know how to estimate the F score. Bing Liu CS Department, UIC 52

A performance criterion (Lee & Liu 2003) n Performance criteria pr/Pr[Y=1]: It can be

A performance criterion (Lee & Liu 2003) n Performance criteria pr/Pr[Y=1]: It can be estimated directly from the validation set as r 2/Pr[f(X) = 1] Recall r = Pr[f(X)=1| Y=1] n Precision p = Pr[Y=1| f(X)=1] To see this n Pr[f(X)=1|Y=1] Pr[Y=1] = Pr[Y=1|f(X)=1] Pr[f(X)=1] n //both side times r Behavior similar to the F-score (= 2 pr / (p+r)) Bing Liu CS Department, UIC 53

A performance criterion (cont …) n n r 2/Pr[f(X) = 1] r can be

A performance criterion (cont …) n n r 2/Pr[f(X) = 1] r can be estimated from positive examples in the validation set. Pr[f(X) = 1] can be obtained using the full validation set. This criterion actually reflects theory very well. Bing Liu CS Department, UIC 54

Empirical Evaluation n Two-step strategy: We implemented a benchmark system, called LPU, which is

Empirical Evaluation n Two-step strategy: We implemented a benchmark system, called LPU, which is available at http: //www. cs. uic. edu/~liub/LPU-download. html n n n Step 1: n Spy n 1 -DNF n Rocchio n Naïve Bayesian (NB) Step 2: n EM with classifier selection n SVM: Run SVM once. n SVM-I: Run SVM iteratively and give converged classifier. n SVM-IS: Run SVM iteratively with classifier selection Biased-SVM (we used SVM light package) Bing Liu CS Department, UIC 55

Bing Liu CS Department, UIC 56

Bing Liu CS Department, UIC 56

Results of Biased SVM Bing Liu CS Department, UIC 57

Results of Biased SVM Bing Liu CS Department, UIC 57

Summary n n n Gave an overview of theory on learning with positive and

Summary n n n Gave an overview of theory on learning with positive and unlabeled examples. Described the existing two-step strategy for learning. Presented an more principled approach to solve the problem based on a biased SVM formulation. Presented a performance measure pr/P(Y=1) that can be estimated from data. Experimental results using text classification show the superior classification power of Biased-SVM. Some more experimental work are being performed to compare Biased-SVM with weighted logistic regression method [Lee & Liu 2003]. Bing Liu CS Department, UIC 58