machine learning Supervised Learning Unsupervised Learning Reinforcement Learning









































































- Slides: 73


머신 러닝(machine learning) • 통계적 원리로 데이터의 패턴을 발견하는 방법 • 분류 • Supervised Learning • Unsupervised Learning • Reinforcement Learning







간단히 해보기 train(Species ~. , data = iris, method = ‘lda’)

간단히 해보기 train(Species ~. , data = iris, method = ‘lda’) 데이터

간단히 해보기 train(Species ~. , data = iris, method = ‘lda’) 예측할 변수



간단히 해보기 train(Species ~. , data = iris, method = ‘lda’) 분석 모형


Linear Discriminant Analysis

Linear Discriminant Analysis

Linear Discriminant Analysis

LDA 결과 Linear Discriminant Analysis 150 samples 4 predictor 3 classes: 'setosa', 'versicolor', 'virginica' No pre-processing Resampling: Bootstrapped (25 reps) Summary of sample sizes: 150, 150, . . . Resampling results: Accuracy Kappa 0. 9820793 0. 9728876

Confusion Matrix 실제 예측 Positive Negative Positive True Postive False Positive (Type I error) Negative False Negative (Type II error) True Negative

Accuracy 실제 예측 Positive Negative Positive True Postive False Positive (Type I error) Negative False Negative (Type II error) True Negative 21

Confusion Matrix lda. model = train(Species ~. , data = iris, method = ‘lda’) p = predict(lda. model, iris) confusion. Matrix(p, iris$Species)

Confusion Matrix 실제 예측 setosa versicolor virginica setosa 50 0 0 versicolor 0 48 1 virginica 0 2 49

실제 예측 setosa versicolor setosa 50 0 versicolor 0 48 virginica 0 2 Virginica로 예측 실제로는 versicolor Confusion Matrix virginica 0 1 49

실제 예측 setosa versicolor virginica setosa 50 0 0 versicolor 0 48 1 0 Versicolor로 예측 2 49 virginica 실제로는 virginica Confusion Matrix

Accuracy 실제 예측 setosa versicolor virginica setosa 50 0 0 versicolor 0 48 1 virginica 0 2 49



Accuracy • 찍어서 맞출 확률 = 0. 3 • Accuracy = 0. 98 • Kappa = 0. 97 실제 예측 setosa versicolor virginica setosa 50 0 0 versicolor 0 48 1 virginica 0 2 49


Precision • 예측이 얼마나 정확한가? 실제 예측 Positive Negative Positive True Postive False Positive (Type I error) Negative False Negative (Type II error) True Negative

Precision • Accuracy = 97. 9% • Precision = 80. 0% 실제 암 건강 양성 8 2 음성 19 971 예측

Precision • Accuracy = 97. 9% • Precision = 100. 0% 실제 암 건강 양성 6 0 음성 21 973 예측

Recall • 전체 중에 얼마나 예측해낼 수 있는가? 실제 예측 Positive Negative Positive True Postive False Positive (Type I error) Negative False Negative (Type II error) True Negative

Recall • Accuracy = 97. 9% • Precision = 80. 0% • Recall = 29. 6% 실제 암 건강 양성 8 2 음성 19 971 예측

Recall • Accuracy = 97. 9% • Precision = 100. 0% • Recall = 22. 2% 실제 암 건강 양성 6 0 음성 21 973 예측



F 1 • Accuracy = 97. 9% • Precision = 80. 0% • Recall = 29. 6% F 1 = 43. 2% 실제 암 건강 양성 8 2 음성 19 971 예측

F 1 • Accuracy = 97. 9% • Precision = 100. 0% • Recall = 22. 2% F 1 = 36. 3% 실제 암 건강 양성 6 0 음성 21 973 예측

K-Nearest Neighbor train(Species ~. , data = iris, method = ‘knn’)


K=1

K=2

K=3

K=5


K를 정하는 방법 #1 수동으로 정한다 train(Species ~. , data = iris, method = 'knn', tune. Grid = data. frame(. k = 3)) But, 근거가 없음




CV를 하는 방법 train(Species ~. , data = iris, method = 'knn', tune. Grid = data. frame(. k = 1: 5), tr. Control = train. Control( method = “cv”, number = 3))

모형 • LDA • K-Nearest Neighbor • Elastic Net. • SVM • Neural Network • Decision Tree

Elastic Net • Linear Model: y = ax + b • y의 오차가 최소화되도록 a와 b를 조정 • 문제점: overfitting

Overfitting











Decision Tree

Decision Tree

Decision Tree





"deep reinforcement learning"
Supervised learning dan unsupervised learning
Vas3k machine learning
Supervised and unsupervised learning
Supervised data mining
Supervised vs unsupervised data mining
Positive reinforcement psychology definition
Unsupervised learning in data mining
Transductive learning for unsupervised text style transfer
Autoencoders
Ann unsupervised learning
Is pca unsupervised learning
Unsupervised learning
Machine learning andrew ng
Autoencoder unsupervised learning
Predicting good probabilities with supervised learning
Supervised learning pipeline
Partially supervised learning
Supervised learning
Apprenticeship learning via inverse reinforcement learning
Apprenticeship learning via inverse reinforcement learning
Inverse reinforcement learning
Fixed and variable schedules of reinforcement
Gradient reversal layer
Unsupervised segmentation
Iso cluster unsupervised classification
Unsupervised models for named entity classification
ü
Unsupervised pos tagging
The wake-sleep algorithm for unsupervised neural networks
Unsupervised hierarchical clustering
Melody randford
Normalized cut loss for weakly-supervised cnn segmentation
Normalized cut loss for weakly-supervised cnn segmentation
Bruce a research chemist for a major petrochemical company
Supervised diversionary program
Interactive supervised classification
Supervised visitation center dc
Supervised agricultural experience ideas
Partially supervised classification of text documents
Non traditional sae projects
Supervised classification
Supervised classification
On training targets for supervised speech separation
Karan kathpalia
Active and passive reinforcement learning
What is active and passive reinforcement learning
Bootstrapping machine learning
Snake game
Moody sdr menu
Hierarchical reinforcement learning survey
What is optimal policy in reinforcement learning
Q learning exploration vs exploitation
Sutton blackjack
Jack's car rental reinforcement learning
Reinforcement learning blackjack
What is active and passive reinforcement learning
I2a reinforcement learning
Socially mediated negative reinforcement
Reinforcement learning slides
Reinforcement learning slides
Reinforcement learning agent environment
Alpha go zero
Reinforcement learning exercises
Policy network reinforcement learning
Lil weng
Using inaccurate models in reinforcement learning
Reinforcement learning lectures
Vassilis athitsos
Chatbot reinforcement learning
Reinforcement learning behaviorism
Reinforcement learning lectures
Passive reinforcement learning in artificial intelligence
Td(0)