# Operations Management Chapter 12 Inventory Management Power Point

- Slides: 77

Operations Management Chapter 12 – Inventory Management Power. Point presentation to accompany Heizer/Render Principles of Operations Management, 6 e Operations Management, 8 e © 2006 Prentice Hall, Inc. © 2006 Prentice 12 –

Outline þ Global Company Profile: Amazon. Com þ Functions Of Inventory þ Types of Inventory þ Inventory Management þ ABC Analysis þ Record Accuracy þ Cycle Counting þ Control of Service Inventories © 2006 Prentice Hall, Inc. 12 –

Outline – Continued þ Inventory Models þ Independent versus Dependent Demand þ Holding, Ordering, and Setup Costs © 2006 Prentice Hall, Inc. 12 –

Outline – Continued þ Inventory Models For Independent Demand þ Basic Economic Order Quantity (EOQ) Model þ Minimizing Costs þ Reorder Points þ Production Order Quantity Model þ Quantity Discount Models © 2006 Prentice Hall, Inc. 12 –

Outline – Continued þ Probabilistic Models and Safety Stock þ Other Probabilistic Models þ Fixed-Period (P) Systems © 2006 Prentice Hall, Inc. 12 –

Learning Objectives When you complete this chapter, you should be able to: Identify or Define: þ þ ABC analysis Record accuracy Cycle counting Independent and dependent demand þ Holding, ordering, and setup costs © 2006 Prentice Hall, Inc. 12 –

Learning Objectives When you complete this chapter, you should be able to: Describe or Explain: þ The functions of inventory and basic inventory models © 2006 Prentice Hall, Inc. 12 –

Amazon. com þ Amazon. com started as a “virtual” retailer – no inventory, no warehouses, no overhead; just computers taking orders to be filled by others þ Growth has forced Amazon. com to become a world leader in warehousing and inventory management © 2006 Prentice Hall, Inc. 12 –

Amazon. com 1. Each order is assigned by computer to the closest distribution center that has the product(s) 2. A “flow meister” at each distribution center assigns work crews 3. Lights indicate products that are to be picked and the light is reset 4. Items are placed in crates on a conveyor. Bar code scanners scan each item 15 times to virtually eliminate errors. © 2006 Prentice Hall, Inc. 12 –

Amazon. com 5. Crates arrive at central point where items are boxed and labeled with new bar code 6. Gift wrapping is done by hand at 30 packages per hour 7. Completed boxes are packed, taped, weighed and labeled before leaving warehouse in a truck 8. Order arrives at customer within a week © 2006 Prentice Hall, Inc. 12 –

Inventory þ One of the most expensive assets of many companies representing as much as 50% of total invested capital þ Operations managers must balance inventory investment and customer service © 2006 Prentice Hall, Inc. 12 –

Functions of Inventory 1. To decouple or separate various parts of the production process 2. To decouple the firm from fluctuations in demand provide a stock of goods that will provide a selection for customers 3. To take advantage of quantity discounts 4. To hedge against inflation © 2006 Prentice Hall, Inc. 12 –

Types of Inventory þ Raw material þ Purchased but not processed þ Work-in-process þ Undergone some change but not completed þ A function of cycle time for a product þ Maintenance/repair/operating (MRO) þ Necessary to keep machinery and processes productive þ Finished goods þ Completed product awaiting shipment © 2006 Prentice Hall, Inc. 12 –

The Material Flow Cycle time 95% Input Wait for inspection Wait to be moved 5% Move Wait in queue Setup Run time for operator time Output Figure 12. 1 © 2006 Prentice Hall, Inc. 12 –

Inventory Management þ How inventory items can be classified þ How accurate inventory records can be maintained © 2006 Prentice Hall, Inc. 12 –

ABC Analysis þ Divides inventory into three classes based on annual dollar volume þ Class A - high annual dollar volume þ Class B - medium annual dollar volume þ Class C - low annual dollar volume þ Used to establish policies that focus on the few critical parts and not the many trivial ones © 2006 Prentice Hall, Inc. 12 –

ABC Analysis Item Stock Number #10286 Percent of Number of Items Stocked x Unit Cost = Annual Dollar Volume Class 1, 000 $ 90, 000 38. 8% #11526 500 154. 00 77, 000 33. 2% A #12760 1, 550 17. 00 26, 350 11. 3% B 350 42. 86 15, 001 6. 4% 1, 000 12. 50 12, 500 5. 4% #10867 #10500 © 2006 Prentice Hall, Inc. 20% Annual Volume (units) Percent of Annual Dollar Volume 30% 72% 23% A B B 12 –

ABC Analysis Item Stock Number Percent of Number of Items Stocked Annual Volume (units) x Unit Cost = Annual Dollar Volume Percent of Annual Dollar Volume Class #12572 600 $ 14. 17 $ 8, 502 3. 7% C #14075 2, 000 . 60 1, 200 . 5% C 100 8. 50 850 . 4% #01307 1, 200 . 42 504 . 2% C #10572 250 . 60 150 . 1% C #01036 © 2006 Prentice Hall, Inc. 50% 5% C 12 –

Percent of annual dollar usage ABC Analysis 80 70 60 50 40 30 20 10 0 A Items – – – – B Items – | | – 10 20 30 40 C Items | | 50 60 70 80 Percent of inventory items © 2006 Prentice Hall, Inc. | | 90 100 Figure 12. 2 12 –

ABC Analysis þ Other criteria than annual dollar volume may be used þ Anticipated engineering changes þ Delivery problems þ Quality problems þ High unit cost © 2006 Prentice Hall, Inc. 12 –

ABC Analysis þ Policies employed may include þ More emphasis on supplier development for A items þ Tighter physical inventory control for A items þ More care in forecasting A items © 2006 Prentice Hall, Inc. 12 –

Record Accuracy þ Accurate records are a critical ingredient in production and inventory systems þ Allows organization to focus on what is needed þ Necessary to make precise decisions about ordering, scheduling, and shipping þ Incoming and outgoing record keeping must be accurate þ Stockrooms should be secure © 2006 Prentice Hall, Inc. 12 –

Cycle Counting þ Items are counted and records updated on a periodic basis þ Often used with ABC analysis to determine cycle þ Has several advantages þ Eliminates shutdowns and interruptions þ Eliminates annual inventory adjustment þ Trained personnel audit inventory accuracy þ Allows causes of errors to be identified and corrected þ Maintains accurate inventory records © 2006 Prentice Hall, Inc. 12 –

Cycle Counting Example 5, 000 items in inventory, 500 A items, 1, 750 B items, 2, 750 C items Policy is to count A items every month (20 working days), B items every quarter (60 days), and C items every six months (120 days) Item Class A Quantity Cycle Counting Policy 500 Each month B 1, 750 Each quarter C 2, 750 Every 6 months Number of Items Counted per Day 500/20 = 25/day 1, 750/60 = 29/day 2, 750/120 = 23/day 77/day © 2006 Prentice Hall, Inc. 12 –

Control of Service Inventories þ Can be a critical component of profitability þ Losses may come from shrinkage or pilferage þ Applicable techniques include 1. Good personnel selection, training, and discipline 2. Tight control on incoming shipments 3. Effective control on all goods leaving facility © 2006 Prentice Hall, Inc. 12 –

Independent Versus Dependent Demand þ Independent demand - the demand for item is independent of the demand for any other item in inventory þ Dependent demand - the demand for item is dependent upon the demand for some other item in the inventory © 2006 Prentice Hall, Inc. 12 –

Holding, Ordering, and Setup Costs þ Holding costs - the costs of holding or “carrying” inventory over time þ Ordering costs - the costs of placing an order and receiving goods þ Setup costs - cost to prepare a machine or process for manufacturing an order © 2006 Prentice Hall, Inc. 12 –

Holding Costs Category Housing costs (including rent or depreciation, operating costs, taxes, insurance) Material handling costs (equipment lease or depreciation, power, operating cost) Labor cost Cost (and Range) as a Percent of Inventory Value 6% (3 - 10%) 3% (1 - 3. 5%) 3% (3 - 5%) Investment costs (borrowing costs, taxes, and insurance on inventory) Pilferage, space, and obsolescence 11% (6 - 24%) Overall carrying cost 26% 3% (2 - 5%) Table 12. 1 © 2006 Prentice Hall, Inc. 12 –

Inventory Models for Independent Demand Need to determine when and how much to order þ Basic economic order quantity þ Production order quantity þ Quantity discount model © 2006 Prentice Hall, Inc. 12 –

Basic EOQ Model Important assumptions 1. Demand is known, constant, and independent 2. Lead time is known and constant 3. Receipt of inventory is instantaneous and complete 4. Quantity discounts are not possible 5. Only variable costs are setup and holding 6. Stockouts can be completely avoided © 2006 Prentice Hall, Inc. 12 –

Inventory level Inventory Usage Over Time Order quantity = Q (maximum inventory level) Usage rate Average inventory on hand Q 2 Minimum inventory Time Figure 12. 3 © 2006 Prentice Hall, Inc. 12 –

Minimizing Costs Objective is to minimize total costs Curve for total cost of holding and setup Annual cost Minimum total cost Table 11. 5 © 2006 Prentice Hall, Inc. Holding cost curve Setup (or order) cost curve Optimal order quantity Order quantity 12 –

D The EOQ Model Annual setup cost = S Q Q Q* D S H = Number of pieces per order = Optimal number of pieces per order (EOQ) = Annual demand in units for the Inventory item = Setup or ordering cost for each order = Holding or carrying cost per unit per year Annual setup cost = (Number of orders placed per year) x (Setup or order cost per order) Annual demand Setup or order = Number of units in each order cost per order = © 2006 Prentice Hall, Inc. D ( S) Q 12 –

D The EOQ Model Annual setup cost = S Q Q Q* D S H Annual holding cost = = Number of pieces per order = Optimal number of pieces per order (EOQ) = Annual demand in units for the Inventory item = Setup or ordering cost for each order = Holding or carrying cost per unit per year Q H 2 Annual holding cost = (Average inventory level) x (Holding cost per unit per year) Order quantity = (Holding cost per unit per year) 2 = Q ( H) 2 © 2006 Prentice Hall, Inc. 12 –

D The EOQ Model Annual setup cost = S Q Q Q* D S H Annual holding cost = = Number of pieces per order = Optimal number of pieces per order (EOQ) = Annual demand in units for the Inventory item = Setup or ordering cost for each order = Holding or carrying cost per unit per year Q H 2 Optimal order quantity is found when annual setup cost equals annual holding cost D Q S = H Q 2 Solving for Q* 2 DS = Q 2 H Q 2 = 2 DS/H Q* = © 2006 Prentice Hall, Inc. 2 DS/H 12 –

An EOQ Example Determine optimal number of needles to order D = 1, 000 units S = $10 per order H = $. 50 per unit per year Q* = 2 DS H Q* = 2(1, 000)(10) = 0. 50 © 2006 Prentice Hall, Inc. 40, 000 = 200 units 12 –

An EOQ Example Determine optimal number of needles to order D = 1, 000 units Q* = 200 units S = $10 per order H = $. 50 per unit per year Expected Demand D number of = N = = Q* Order quantity orders 1, 000 N= = 5 orders per year 200 © 2006 Prentice Hall, Inc. 12 –

An EOQ Example Determine optimal number of needles to order D = 1, 000 units Q* = 200 units S = $10 per order N = 5 orders per year H = $. 50 per unit per year Number of working Expected days per year time between = T = N orders T= © 2006 Prentice Hall, Inc. 250 = 50 days between orders 5 12 –

An EOQ Example Determine optimal number of needles to order D = 1, 000 units Q* = 200 units S = $10 per order N = 5 orders per year H = $. 50 per unit per year T = 50 days Total annual cost = Setup cost + Holding cost Q D S + H 2 Q 1, 000 200 TC = ($10) + ($. 50) 200 2 TC = (5)($10) + (100)($. 50) = $50 + $50 = $100 © 2006 Prentice Hall, Inc. 12 –

Robust Model þ The EOQ model is robust þ It works even if all parameters and assumptions are not met þ The total cost curve is relatively flat in the area of the EOQ © 2006 Prentice Hall, Inc. 12 –

An EOQ Example Management underestimated demand by 50% D = 1, 000 units 1, 500 units Q* = 200 units S = $10 per order N = 5 orders per year H = $. 50 per unit per year T = 50 days Q D TC = S + H 2 Q 1, 500 200 TC = ($10) + ($. 50) = $75 + $50 = $125 200 2 Total annual cost increases by only 25% © 2006 Prentice Hall, Inc. 12 –

An EOQ Example Actual EOQ for new demand is 244. 9 units D = 1, 000 units 1, 500 units Q* = 244. 9 units S = $10 per order N = 5 orders per year H = $. 50 per unit per year T = 50 days Q D TC = S + H 2 Q 1, 500 244. 9 TC = ($10) + ($. 50) 244. 9 2 TC = $61. 24 + $61. 24 = $122. 48 © 2006 Prentice Hall, Inc. Only 2% less than the total cost of $125 when the order quantity was 200 12 –

Reorder Points þ þ EOQ answers the “how much” question The reorder point (ROP) tells when to order Lead time for a Demand ROP = per day new order in days =dx. L D d = Number of working days in a year © 2006 Prentice Hall, Inc. 12 –

Inventory level (units) Reorder Point Curve Figure 12. 5 © 2006 Prentice Hall, Inc. Q* Slope = units/day = d ROP (units) Lead time = L Time (days) 12 –

Reorder Point Example Demand = 8, 000 DVDs per year 250 working day year Lead time for orders is 3 working days D d= Number of working days in a year = 8, 000/250 = 32 units ROP = d x L = 32 units per day x 3 days = 96 units © 2006 Prentice Hall, Inc. 12 –

Production Order Quantity Model þ Used when inventory builds up over a period of time after an order is placed þ Used when units are produced and sold simultaneously © 2006 Prentice Hall, Inc. 12 –

Inventory level Production Order Quantity Model Part of inventory cycle during which production (and usage) is taking place Demand part of cycle with no production Maximum inventory t Time Figure 12. 6 © 2006 Prentice Hall, Inc. 12 –

Production Order Quantity Model Q = Number of pieces per order p = Daily production rate H = Holding cost per unit per year d = Daily demand/usage rate t = Length of the production run in days Holding cost Annual inventory = (Average inventory level) x per unit per year holding cost Annual inventory = (Maximum inventory level)/2 level Total produced during Maximum = – the production run inventory level Total used during the production run = pt – dt © 2006 Prentice Hall, Inc. 12 –

Production Order Quantity Model Q = Number of pieces per order p = Daily production rate H = Holding cost per unit per year d = Daily demand/usage rate t = Length of the production run in days Total produced during Maximum = – the production run inventory level Total used during the production run = pt – dt However, Q = total produced = pt ; thus t = Q/p Q Maximum = p inventory level p Holding cost = © 2006 Prentice Hall, Inc. –d Q p =Q 1– d p Maximum inventory level Q d (H ) = 1– 2 p 2 H 12 –

Production Order Quantity Model Q = Number of pieces per order H = Holding cost per unit per year D = Annual demand p = Daily production rate d = Daily demand/usage rate Setup cost = (D/Q)S Holding cost = 1/2 HQ[1 - (d/p)] (D/Q)S = 1/2 HQ[1 - (d/p)] Q 2 2 DS = H[1 - (d/p)] Q* = © 2006 Prentice Hall, Inc. 2 DS H[1 - (d/p)] 12 –

Production Order Quantity Example D = 1, 000 units S = $10 H = $0. 50 per unit per year Q* = 2 DS H[1 - (d/p)] Q* = 2(1, 000)(10) 0. 50[1 - (4/8)] p = 8 units per day d = 4 units per day = 80, 000 = 282. 8 or 283 hubcaps © 2006 Prentice Hall, Inc. 12 –

Production Order Quantity Model When annual data are used the equation becomes Q* = © 2006 Prentice Hall, Inc. 2 DS annual demand rate H 1– annual production rate 12 –

Quantity Discount Models þ Reduced prices are often available when larger quantities are purchased þ Trade-off is between reduced product cost and increased holding cost Total cost = Setup cost + Holding cost + Product cost TC = © 2006 Prentice Hall, Inc. D QH S+ + PD Q 2 12 –

Quantity Discount Models A typical quantity discount schedule Discount Number Discount Quantity Discount (%) Discount Price (P) 1 0 to 999 no discount $5. 00 2 1, 000 to 1, 999 4 $4. 80 3 2, 000 and over 5 $4. 75 Table 12. 2 © 2006 Prentice Hall, Inc. 12 –

Quantity Discount Models Steps in analyzing a quantity discount 1. For each discount, calculate Q* 2. If Q* for a discount doesn’t qualify, choose the smallest possible order size to get the discount 3. Compute the total cost for each Q* or adjusted value from Step 2 4. Select the Q* that gives the lowest total cost © 2006 Prentice Hall, Inc. 12 –

Quantity Discount Models Total cost curve for discount 2 Total cost $ Total cost curve for discount 1 b a Q* for discount 2 is below the allowable range at point a and must be adjusted upward to 1, 000 units at point b 1 st price break 0 © 2006 Prentice Hall, Inc. Total cost curve for discount 3 2 nd price break 1, 000 2, 000 Order quantity Figure 12. 7 12 –

Quantity Discount Example Calculate Q* for every discount © 2006 Prentice Hall, Inc. Q* = 2 DS IP Q 1* = 2(5, 000)(49) = 700 cars order (. 2)(5. 00) Q 2* = 2(5, 000)(49) = 714 cars order (. 2)(4. 80) Q 3* = 2(5, 000)(49) = 718 cars order (. 2)(4. 75) 12 –

Quantity Discount Example Calculate Q* for every discount © 2006 Prentice Hall, Inc. Q* = 2 DS IP Q 1* = 2(5, 000)(49) = 700 cars order (. 2)(5. 00) Q 2* = 2(5, 000)(49) = 714 cars order (. 2)(4. 80) 1, 000 — adjusted Q 3* = 2(5, 000)(49) = 718 cars order (. 2)(4. 75) 2, 000 — adjusted 12 –

Quantity Discount Example Discount Unit Order Number Price Quantity Annual Product Cost Annual Ordering Holding Cost Total 1 $5. 00 700 $25, 000 $350 $25, 700 2 $4. 80 1, 000 $245 $480 $24, 725 3 $4. 75 2, 000 $23. 750 $122. 50 $950 $24, 822. 50 Table 12. 3 Choose the price and quantity that gives the lowest total cost Buy 1, 000 units at $4. 80 per unit © 2006 Prentice Hall, Inc. 12 –

Probabilistic Models and Safety Stock þ Used when demand is not constant or certain þ Use safety stock to achieve a desired service level and avoid stockouts ROP = d x L + ss Annual stockout costs = the sum of the units short x the probability x the stockout cost/unit x the number of orders per year © 2006 Prentice Hall, Inc. 12 –

Safety Stock Example ROP = 50 units Orders per year = 6 Stockout cost = $40 per frame Carrying cost = $5 per frame per year Number of Units ROP © 2006 Prentice Hall, Inc. 30 40 50 60 70 Probability. 2. 2. 3. 2. 1 1. 0 12 –

Safety Stock Example ROP = 50 units Orders per year = 6 Safety Stock Additional Holding Cost 20 (20)($5) = $100 10 0 Stockout cost = $40 per frame Carrying cost = $5 per frame per year Total Cost Stockout Cost $0 $100 = $240 $290 $0 (10)(. 2)($40)(6) + (20)(. 1)($40)(6) = $960 (10)($5) = $50 (10)(. 1)($40)(6) A safety stock of 20 frames gives the lowest total cost ROP = 50 + 20 = 70 frames © 2006 Prentice Hall, Inc. 12 –

Inventory level Probabilistic Demand Minimum demand during lead time Maximum demand during lead time Mean demand during lead time ROP = 350 + safety stock of 16. 5 = 366. 5 ROP Normal distribution probability of demand during lead time Expected demand during lead time (350 kits) Safety stock 0 Figure 12. 8 © 2006 Prentice Hall, Inc. Lead time Place order 16. 5 units Time Receive order 12 – 63

Probabilistic Demand Risk of a stockout (5% of area of normal curve) Probability of no stockout 95% of the time Mean demand 350 0 © 2006 Prentice Hall, Inc. ROP = ? kits Quantity Safety stock z Number of standard deviations 12 – 64

Probabilistic Demand Use prescribed service levels to set safety stock when the cost of stockouts cannot be determined ROP = demand during lead time + Zsdlt where © 2006 Prentice Hall, Inc. Z = number of standard deviations sdlt = standard deviation of demand during lead time 12 – 65

Probabilistic Example Average demand = m = 350 kits Standard deviation of demand during lead time = sdlt = 10 kits 5% stockout policy (service level = 95%) Using Appendix I, for an area under the curve of 95%, the Z = 1. 65 Safety stock = Zsdlt = 1. 65(10) = 16. 5 kits Reorder point = expected demand during lead time + safety stock = 350 kits + 16. 5 kits of safety stock = 366. 5 or 367 kits © 2006 Prentice Hall, Inc. 12 – 66

Other Probabilistic Models When data on demand during lead time is not available, there are other models available 1. When demand is variable and lead time is constant 2. When lead time is variable and demand is constant 3. When both demand lead time are variable © 2006 Prentice Hall, Inc. 12 –

Other Probabilistic Models Demand is variable and lead time is constant ROP = (average daily demand x lead time in days) + Zsdlt where sd = standard deviation of demand per day sdlt = sd © 2006 Prentice Hall, Inc. lead time 12 –

Probabilistic Example Average daily demand (normally distributed) = 15 Standard deviation = 5 Lead time is constant at 2 days Z for 90% = 1. 28 From Appendix I 90% service level desired ROP = (15 units x 2 days) + Zsdlt = 30 + 1. 28(5)( 2) = 30 + 8. 96 = 38. 96 ≈ 39 Safety stock is about 9 units © 2006 Prentice Hall, Inc. 12 –

Other Probabilistic Models Lead time is variable and demand is constant ROP =(daily demand x average lead time in days) =Z x (daily demand) x slt where © 2006 Prentice Hall, Inc. slt = standard deviation of lead time in days 12 –

Probabilistic Example Z for 98% = 2. 055 From Appendix I Daily demand (constant) = 10 Average lead time = 6 days Standard deviation of lead time = slt = 5 98% service level desired ROP = (10 units x 6 days) + 2. 055(10 units)(3) = 60 + 61. 55 = 121. 65 Reorder point is about 122 units © 2006 Prentice Hall, Inc. 12 –

Other Probabilistic Models Both demand lead time are variable ROP = (average daily demand x average lead time) + Zsdlt where sd = standard deviation of demand per day slt = standard deviation of lead time in days sdlt = (average lead time x sd 2) + (average daily demand) 2 slt 2 © 2006 Prentice Hall, Inc. 12 –

Probabilistic Example Average daily demand (normally distributed) = 150 Standard deviation = sd = 16 Average lead time 5 days (normally distributed) Standard deviation = slt = 2 days 95% service level desired Z for 95% = 1. 65 From Appendix I ROP = (150 packs x 5 days) + 1. 65 sdlt = (150 x 5) + 1. 65 (5 days x 162) + (1502 x 12) = 750 + 1. 65(154) = 1, 004 packs © 2006 Prentice Hall, Inc. 12 –

Fixed-Period (P) Systems þ Orders placed at the end of a fixed period þ Inventory counted only at end of period þ Order brings inventory up to target level þ Only relevant costs are ordering and holding þ Lead times are known and constant þ Items are independent from one another © 2006 Prentice Hall, Inc. 12 –

Fixed-Period (P) Systems On-hand inventory Target maximum (T) Q 4 Q 2 Q 1 Q 3 P P P Time © 2006 Prentice Hall, Inc. Figure 12. 9 12 –

Fixed-Period (P) Example 3 jackets are back ordered It is time to place an order No jackets are in stock Target value = 50 Order amount (Q) = Target (T) - Onhand inventory - Earlier orders not yet received + Back orders Q = 50 - 0 + 3 = 53 jackets © 2006 Prentice Hall, Inc. 12 –

Fixed-Period Systems þ Inventory is only counted at each review period þ May be scheduled at convenient times þ Appropriate in routine situations þ May result in stockouts between periods þ May require increased safety stock © 2006 Prentice Hall, Inc. 12 –

- Operations management chapter 12 inventory management
- Power traiangle
- Power bi training powerpoint
- Point point power
- Merchandising operations and inventory systems
- Chapter 13 inventory management problems and solutions
- Chapter 13 inventory management problems and solutions
- Chapter 13 inventory management
- Chapter 13 inventory management
- Chapter 13 inventory management
- Independant demand
- Inventory control point
- Operations management chapter 3 ppt
- Operations management chapter 4 forecasting solutions
- International strategy
- Objectives of operations
- Production design in operations management
- Operations management chapter 10
- Asq control chart
- Chapter 8 operations management
- Forecasting
- Crossover charts
- Forecasting ppt in operations management
- Chapter 11 operations management
- Human resource and job design in operations management
- Operations management chapter 4
- Chapter 2 operations strategy and competitiveness
- Quality management in operations management
- What is tqm
- Bit4bytes
- Image enhancement by point processing
- Point processing operations
- Number system
- Neighborhood processing in digital image processing
- Solar power satellites and microwave power transmission
- Actual power and potential power
- Flex28024a
- Dispersive power is proportional to
- Power of a power property
- General power rule vs power rule
- Power angle curve in power system stability
- Power absorbed or delivered
- Inventory costing and capacity analysis
- Chapter 5 purchasing and inventory
- Chapter 9 inventory costing and capacity analysis
- Inventory costing and capacity analysis
- Evangelio del domingo en power point
- Como hacer un ova
- Powerpoint boutique
- Tennis presentazione
- Tm pp
- Power point sul riciclo in inglese
- Cara menghitung luas trapesium
- Rangkuman sekolah sabat
- Laboutiquedelpowerpoint x
- La boutique del power point
- La boutique del power point
- La boutique del power point
- Gizi kuliner adalah
- Decreto 1330 del 25 de julio de 2019
- Powerpoint
- Conclusiones de un portafolio digital
- Icon toolbar untuk format penomoran adalah
- Formula corriente
- Advantage and disadvantage of using powerpoint presentation
- Plantillas de prezi
- Tesina power point
- La boutique del powerpoint x
- Power point pembuatan rpp 1 lembar
- Power point fisica
- Power point
- Concentrese en power point
- Modelos de bosquejos
- Le piene del nilo scuola primaria
- Laboutiquedelpowerpointx
- La boutique del powerpoint
- La boutique del powerpoint x
- La boutique del power point