Inynieria Chemiczna i Procesowa Teoria procesw wymiany masy

  • Slides: 60
Download presentation
Inżynieria Chemiczna i Procesowa Teoria procesów wymiany masy Wykład nr 15 : Teoria procesów

Inżynieria Chemiczna i Procesowa Teoria procesów wymiany masy Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Dyfuzja i konwekcja Omówimy procesy przenoszenia masy w wieloskładnikowych ośrodkach

Inżynieria Chemiczna i Procesowa Dyfuzja i konwekcja Omówimy procesy przenoszenia masy w wieloskładnikowych ośrodkach ze szczególnym uwzględnieniem procesów przepływowych. Najogólniej rzecz ujmując różne rodzaje transportu masy podzielić można na dwie zasadnicze grupy: Przenoszenie molekularne - DYFUZJA Makroskopowe mieszanie elementów płynu - KONWEKCJA Zaznaczyć należy, że podczas wymiany masy w płynach obydwa sposoby przenoszenia występują z reguły jednocześnie. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa DYFUZJA Jeżeli w różnych punktach płynu składającego się z dwóch

Inżynieria Chemiczna i Procesowa DYFUZJA Jeżeli w różnych punktach płynu składającego się z dwóch składników A i B, pozostającego w spoczynku lub poruszającego się ruchem laminarnym będą różne stężenia obu składników to wówczas wystąpi spontaniczny ruch cząstek z miejsc o stężeniu wyższym do miejsc o stężeniu niższym. Mamy odczynienia z procesem DYFUZJI Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Stężenie dyfundującej substancji może być określone w postaci stężenia masowego,

Inżynieria Chemiczna i Procesowa Stężenie dyfundującej substancji może być określone w postaci stężenia masowego, molowego lub odpowiednich stężeń ułamkowych. Wzory definicyjne zestawiono poniżej: stężenie masowe składnika stężenie molowe dla gazów doskonałych Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa ułamek masowy składnika ułamek molowy składnika w fazie ciekłej ułamek

Inżynieria Chemiczna i Procesowa ułamek masowy składnika ułamek molowy składnika w fazie ciekłej ułamek molowy składnika w fazie gazowej gdzie: mi – masa składnika; V – objętość mieszaniny; ni – liczba moli składnika; pi – ciśnienie cząstkowe; Mi – masa molowa; ρ, c, p – odpowiednie wielkości dla mieszaniny. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Każdy składnik dyfundujący w mieszaninie przemieszcza się z właściwą sobie

Inżynieria Chemiczna i Procesowa Każdy składnik dyfundujący w mieszaninie przemieszcza się z właściwą sobie prędkością vi względem układu współrzędnych umiejscowionych w przestrzeni. Stąd wypadkowa prędkość mieszaniny, w zależności od użytych stężeń, może być obliczona jako : lokalna średnia prędkość masowa lub jako: lokalna średnia prędkość molowa Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Rozpatrując dyfuzję składnika w strumieniu płynu opieramy się na doświadczalnym

Inżynieria Chemiczna i Procesowa Rozpatrując dyfuzję składnika w strumieniu płynu opieramy się na doświadczalnym prawie FICKA, które dla warunków izotermicznych i izobarycznych wyrażone jest wzorem: prawo FICKA lub dla dowolnych warunków: współczynnik dyfuzji [ m 2 / s ] molowa gęstość strumienia w kierunku x [ mol / m 2 * s ] Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Strumień dyfundującego składnika można wyrazić również w jednostkach masy w

Inżynieria Chemiczna i Procesowa Strumień dyfundującego składnika można wyrazić również w jednostkach masy w warunkach stałości temperatury i ciśnienia c = const : masowa gęstość strumienia w kierunku x [ kg / m 2 * s ] Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Dla układów przepływowych strumień substancji dyfundującej określamy względem współrzędnych poruszających

Inżynieria Chemiczna i Procesowa Dla układów przepływowych strumień substancji dyfundującej określamy względem współrzędnych poruszających się ze średnią prędkością płynu lub względem współrzędnych umiejscowionych w przestrzeni. Dla układu dwuskładnikowego A + B poruszającego się ze stałą molową średnią prędkością Vx*, gęstość strumienia masy składnika A względem przepływającej mieszaniny wynika z zależności: gęstość strumienia składnika względem nieruchomego układu współrzędnych jest równa: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Strumienie JA i NA są ze sobą powiązane: dla układu

Inżynieria Chemiczna i Procesowa Strumienie JA i NA są ze sobą powiązane: dla układu dwuskładnikowego: mnożąc obie strony przez c. A Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa korzystając z tej samej metody można wyprowadzić równanie dla strumienia

Inżynieria Chemiczna i Procesowa korzystając z tej samej metody można wyprowadzić równanie dla strumienia masowego: wektor natężenia strumienia masy [ mol / m 2 * s ] względem współrzędnych zewnętrznych składa się z dwóch członów : człon dyfuzyjny przemieszczanie się składnika na skutek przepływu mieszaniny Nakładanie się DYFUZJI na strumień przepływu mieszaniny. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa analogiczna zależność obowiązuje dla składnika B: jeżeli porównamy te związki

Inżynieria Chemiczna i Procesowa analogiczna zależność obowiązuje dla składnika B: jeżeli porównamy te związki dla c = const i uwzględnimy że: dla układu dwuskładnikowego Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa KONWEKCJA Konwekcyjne przenoszenie masy wewnątrz płynu, między płynem i powierzchnią

Inżynieria Chemiczna i Procesowa KONWEKCJA Konwekcyjne przenoszenie masy wewnątrz płynu, między płynem i powierzchnią ciała stałego lub powierzchnią między fazową w układach o ograniczonej rozpuszczalności może zachodzić podczas przepływu wywołanego działaniem sił zewnętrznych albo przepływu spowodowanego różnicami gęstości płynu na skutek różnicy stężeń lub temperatury. Pierwszy rodzaj ruchu to KONWEKCJA WYMUSZONA Drugi rodzaj ruchu to KONWEKCJA SWOBODNA lub NATURALNA Równanie kinetyczne konwekcji jest analogiem do prawa stygnięcia ciał Newtona: molowa gęstość strumienia masy [ mol / m 2 * s ] współczynnik przenoszenia masy [m/s] różnica stężeń [ mol / m 3 ] Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Przenoszenie substancji z głębi fazy płynnej do powierzchni międzyfazowej (

Inżynieria Chemiczna i Procesowa Przenoszenie substancji z głębi fazy płynnej do powierzchni międzyfazowej ( lub odwrotnie ) nazywamy procesem wnikania masy. Przenoszenie substancji pomiędzy dwiema fazami przez powierzchnię rozdziału nazywamy procesem przenikania masy. Wyznaczenie natężenia strumienia masy wymaga określenia powierzchni, stąd też strumień NA odnosimy do powierzchni międzyfazowej: stężenie w głębi płynu współczynnik wnikania stężenie na powierzchni międzyfazowej Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Natężenie strumienia masy na powierzchni między fazowej jest równe: dla

Inżynieria Chemiczna i Procesowa Natężenie strumienia masy na powierzchni między fazowej jest równe: dla układów rozcieńczonych możemy to uprościć do postaci: porównując z : Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa otrzymujemy zależność na współczynnik wnikania masy w postaci : Aby

Inżynieria Chemiczna i Procesowa otrzymujemy zależność na współczynnik wnikania masy w postaci : Aby wyznaczyć wartość współczynnika wnikania musimy znać rozkład stężeń w pobliży powierzchni międzyfazowej. Umiejętność wyznaczania wartości współczynników wnikania masy jest niezwykle istotna. Stanowią one bowiem podstawowe wielkości wykorzystywane przy projektowaniu urządzeń zwanych ogólnie wymiennikami masy lub reaktorami. Jedną z metod wyznaczania współczynników wnikania jest rozwiązanie ścisłe. Potrzebna jest znajomość pola stężenia substancji A. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Równanie KONWEKCJI - DYFUZJI W większości przypadków przemysłowych proces przenoszenia

Inżynieria Chemiczna i Procesowa Równanie KONWEKCJI - DYFUZJI W większości przypadków przemysłowych proces przenoszenia masy istnieje w warunkach przepływu płynu. Ruch masy występuje najczęściej w wielu kierunkach. Niekiedy mamy do czynienia z procesem nieustalonym, a ponadto często zachodzi reakcja chemiczna. Konieczne jest sporządzenie bilansu masy. Ograniczymy się tu do układu dwuskładnikowego. CA u. AX z y CA+d. CA Rozważmy różniczkowy element o objętości dxdydz Stężenie składnika A w płaszczyźnie ściany dydz dla wartości x wynosi CA, natomiast dla ściany dydz przechodzącej przez punkt x + dx wynosi x C + d. C A A u. AX+du. AX Analogicznie dla pozostałych kierunków. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Natężenie dopływu składnika A [ mol / s] do elementu

Inżynieria Chemiczna i Procesowa Natężenie dopływu składnika A [ mol / s] do elementu wyniesie: Na kierunku x: Na kierunku y: Na kierunku z: Natężenie odpływu składnika A [ mol / s] z elementu wyniesie: Na kierunku x: Na kierunku y: Na kierunku z: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Akumulacja składnika A w rozważanym elemencie wyniesie: Zdefiniujmy szybkość reakcji

Inżynieria Chemiczna i Procesowa Akumulacja składnika A w rozważanym elemencie wyniesie: Zdefiniujmy szybkość reakcji chemicznej, jako liczbę moli (lub kilogramów) danego składnika, która przereagowuje w jednostce czasu i w jednostce objętości. Jeżeli szybkość reakcji chemicznej odniesiemy do liczby moli to oznaczamy ją przez R , jeżeli do kilogramów to oznaczamy ją przez r. Ubytek składnika A w rozważanym elemencie na skutek reakcji chemicznej będzie równy: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Z aksjomatów bilansowania wynika: natężenie dopływu składnika natężenie odpływu składnika

Inżynieria Chemiczna i Procesowa Z aksjomatów bilansowania wynika: natężenie dopływu składnika natężenie odpływu składnika akumulacja składnika można to zapisać równaniem: lub wyrażając masę w kilogramach a nie molach : Wykład nr 15 : Teoria procesów wymiany masy ubytek składnika w wyniku reakcji chemicznej

Inżynieria Chemiczna i Procesowa różniczki występujące w równaniu możemy przedstawić w postaci: po podstawieniu:

Inżynieria Chemiczna i Procesowa różniczki występujące w równaniu możemy przedstawić w postaci: po podstawieniu: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa analogiczne równanie można otrzymać dla składnika B: Dla układu dwuskładnikowego:

Inżynieria Chemiczna i Procesowa analogiczne równanie można otrzymać dla składnika B: Dla układu dwuskładnikowego: dla bilansu w odniesieniu do 1 mola substancji : Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa po dodaniu stronami : uwzględniając definicję średniej masowej prędkości płynu:

Inżynieria Chemiczna i Procesowa po dodaniu stronami : uwzględniając definicję średniej masowej prędkości płynu: równanie ciągłości Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa równanie możemy zapisać : gdzie n. A – gęstość strumienia

Inżynieria Chemiczna i Procesowa równanie możemy zapisać : gdzie n. A – gęstość strumienia składnika A podstawiając wyrażenie: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa dla stałej gęstości i wartości współczynników dyfuzji równanie sprowadza się

Inżynieria Chemiczna i Procesowa dla stałej gęstości i wartości współczynników dyfuzji równanie sprowadza się do: a po podzieleniu przez masę molową: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Równanie to można zapisać w postaci: równanie KONWEKCJI - DYFUZJI

Inżynieria Chemiczna i Procesowa Równanie to można zapisać w postaci: równanie KONWEKCJI - DYFUZJI Dla współrzędnych prostokątnych: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Gdy nie zachodzą przemiany chemiczne : A dla płynów w

Inżynieria Chemiczna i Procesowa Gdy nie zachodzą przemiany chemiczne : A dla płynów w spoczynku u = 0: drugie prawo Ficka Ogranicza się ono do opisu dyfuzji w ciałach stałych oraz płynach nieruchomych, pełna analogia do drugiego prawa Fouriera jest oczywista. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa dla procesów ustalonych w czasie: dla płynów w ruchu: dla

Inżynieria Chemiczna i Procesowa dla procesów ustalonych w czasie: dla płynów w ruchu: dla ośrodka nieruchomego: W przypadku występowania reakcji chemicznej równania te należy uzupełnić o człon RA Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Rozwiązanie równania konwekcji dyfuzji wymaga sformułowania odpowiednich warunków brzegowych i

Inżynieria Chemiczna i Procesowa Rozwiązanie równania konwekcji dyfuzji wymaga sformułowania odpowiednich warunków brzegowych i początkowych na podstawie fizycznego opisu procesu. Warunki brzegowe na powierzchni ograniczającej rozpatrywany obszar określamy najczęściej w postaci: stężenia na powierzchni : w przypadku rozpuszczania stężenie roztworu nasyconego w przypadku odparowania cieczy równowagowe ciśnienie cząstkowe składnik wartości strumienia masy na powierzchni według równania konwekcji szybkości zaniku lub powstawania substancji na skutek reakcji chemicznej na powierzchni Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Modele wnikania masy: Istnieje obecnie wiele modeli teoretycznie opisujących wnikanie

Inżynieria Chemiczna i Procesowa Modele wnikania masy: Istnieje obecnie wiele modeli teoretycznie opisujących wnikanie masy przy różnych założeniach upraszczających. Spośród nich znaczenie praktyczne zachowały: model warstewkowy modele penetracyjne Model warstewkowy opiera się na koncepcji laminarnej warstwy przy powierzchni międzyfazowej. Zakłada się przy tym istnienie warstwy zastępczej o grubości δ. Przenoszenie masy przez tę warstwę odbywa się wyłącznie w wyniku ustalonej jednowymiarowej dyfuzji molekularnej, natomiast elementy płynu położone głębiej są doskonale wymieszane na skutek ruchów konwekcyjnych. Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa powierzchnia międzyfazowa wnętrze płynu warstewka graniczna Wykład nr 15 :

Inżynieria Chemiczna i Procesowa powierzchnia międzyfazowa wnętrze płynu warstewka graniczna Wykład nr 15 : Teoria procesów wymiany masy Przy takich założeniach dyfuzyjny opór warstwy zastępczej jest równoważny oporowi rzeczywistego procesu wnikania masy przez dyfuzję i konwekcję.

Inżynieria Chemiczna i Procesowa Przy założeniu izotermiczności i nieściśliwości płynu równanie Konwekcji – Dyfuzji

Inżynieria Chemiczna i Procesowa Przy założeniu izotermiczności i nieściśliwości płynu równanie Konwekcji – Dyfuzji przyjmuje postać: z warunkami brzegowymi: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Całkując to równanie znajdujemy rozkład stężenia w warstwie: A stąd

Inżynieria Chemiczna i Procesowa Całkując to równanie znajdujemy rozkład stężenia w warstwie: A stąd możemy wyznaczyć strumień masy: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa MODEL WARSTEWKOWY współczynnik wnikania Wykład nr 15 : Teoria procesów

Inżynieria Chemiczna i Procesowa MODEL WARSTEWKOWY współczynnik wnikania Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Modele penetracyjne zakładają, że zachodzące wewnątrz płynu zawirowania burzliwe nie

Inżynieria Chemiczna i Procesowa Modele penetracyjne zakładają, że zachodzące wewnątrz płynu zawirowania burzliwe nie są tłumione w pobliżu powierzchni międzyfazowej, lecz dochodzą do tej powierzchni, prowadząc do ciągłego jej odnawiania. Powierzchnia płynu stanowi zatem „mozaikę” elementów o różnym wieku. Stąd średnia wartość strumienia masy wyniesie: funkcja rozkładu wieku elementów powierzchni chwilowy strumień masy odniesiony do elementu o wieku t Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Zakładamy że wnikanie masy do poszczególnych elementów płynu wyniesionych na

Inżynieria Chemiczna i Procesowa Zakładamy że wnikanie masy do poszczególnych elementów płynu wyniesionych na powierzchnię przebiega tak samo, jak wnikanie do środowiska nieruchomego o nieskończonej głębokości. Przy przyjętych założeniach równanie Konwekcji – Dyfuzji sprowadza się do postaci: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa z warunkami granicznymi: Wykład nr 15 : Teoria procesów wymiany

Inżynieria Chemiczna i Procesowa z warunkami granicznymi: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Całkowanie tego równania jest dość skomplikowane, pozwala jednak określić nam

Inżynieria Chemiczna i Procesowa Całkowanie tego równania jest dość skomplikowane, pozwala jednak określić nam chwilowy strumień masy w postaci: Średni strumień masy zależeć będzie od przyjętej postaci funkcji rozkładu wieku elementów powierzchni Φ(t) Rozpatrzymy dwa modele Higbiego i Danckwersta Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Model Higbiego zakłada, że czas życia wszystkich elementów powierzchni jest

Inżynieria Chemiczna i Procesowa Model Higbiego zakłada, że czas życia wszystkich elementów powierzchni jest jednakowy i wynosi τ, tj. po upływie czasu τ każdy element zostaje odnowiony prowadzi to do następującej postaci funkcji rozkładu czasu życia elementów powierzchni: wówczas średni strumień masy: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Model Danckwersta zakłada, że prawdopodobieństwo odnowienia elementu powierzchni nie zależy

Inżynieria Chemiczna i Procesowa Model Danckwersta zakłada, że prawdopodobieństwo odnowienia elementu powierzchni nie zależy od jego wieku i prowadzi do zależności: szybkość odnawiania powierzchni wówczas średni strumień masy: Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Pamiętając że: w ogólnym ujęciu dla modeli penetracyjnych zestawiając: model

Inżynieria Chemiczna i Procesowa Pamiętając że: w ogólnym ujęciu dla modeli penetracyjnych zestawiając: model penetracyjny model warstewkowy Wykład nr 15 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Wyznaczanie współczynników wnikania masy -liczba Sherwooda jest to miara stosunku

Inżynieria Chemiczna i Procesowa Wyznaczanie współczynników wnikania masy -liczba Sherwooda jest to miara stosunku ogólnej szybkości przenoszenia masy do szybkości dyfuzji. -druga liczba Damkolera jest miarą stosunku zmiany ilości reagenta w wyniku reakcji chemicznej od ilości reagenta przenoszonego na skutek dyfuzji. -dyfuzyjna liczba Pecleta jest miarą stosunku rozkładu stężeń wywołanego na skutek konwekcji do rozkładu stężeń wywołanego dyfuzją. -liczba Schmidta jest miarą stosunku szybkości cząsteczkowego przenoszenia pędu do szybkości dyfuzji masy. Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Liczbę Pe możemy przedstawić jako iloczyn Reynoldsa i Schmidta Liczby

Inżynieria Chemiczna i Procesowa Liczbę Pe możemy przedstawić jako iloczyn Reynoldsa i Schmidta Liczby Pe i Sc stanowią podstawowe kryteria podobieństwa procesu dyfuzyjnego transportu masy. Ogólnie rzecz ujmując : Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa stałe charakterystyczne dla danego procesu Dla konwekcji naturalnej pojawia się

Inżynieria Chemiczna i Procesowa stałe charakterystyczne dla danego procesu Dla konwekcji naturalnej pojawia się liczba Grashofa Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa W równaniach korelacyjnych pojawiają się liczby będące kombinacjami liczb podstawowych:

Inżynieria Chemiczna i Procesowa W równaniach korelacyjnych pojawiają się liczby będące kombinacjami liczb podstawowych: - liczba Lewisa - liczba Stantona Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Większość przemysłowych procesów wymiany masy polega na przenikaniu składnika lub

Inżynieria Chemiczna i Procesowa Większość przemysłowych procesów wymiany masy polega na przenikaniu składnika lub kilku składników z głębi jednej fazy do drugiej przez powierzchnię międzyfazową. Należą do tej grupy bardzo ważne praktycznie procesy rozdzielania substancji, np. ekstrakcja, absorpcja, destylacja, suszenie itp. . Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Przenoszenie masy podczas przenikania obejmuje trzy następujące etapy: 1) Wnikanie

Inżynieria Chemiczna i Procesowa Przenoszenie masy podczas przenikania obejmuje trzy następujące etapy: 1) Wnikanie masy z wnętrza pierwszej fazy do powierzchni międzyfazowej 2) przenoszenie masy przez powierzchnię międzyfazową 3) wnikanie masy od powierzchni między fazowej do wnętrza drugiej fazy Stwierdzono doświadczalnie, że opór powierzchniowy przenoszenia jest pomijalny, a zatem sytuacja na granicy faz odpowiada stanowi równowagi dynamicznej. Stąd też stężenia na powierzchni rozdziału faz układu o ograniczonej rozpuszczalności możemy określić jako równowagowe. Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Rozpatrzmy typowy ustalony proces przenikania masy pomiędzy fazą gazową i

Inżynieria Chemiczna i Procesowa Rozpatrzmy typowy ustalony proces przenikania masy pomiędzy fazą gazową i ciekłą. Stosownie do teorii dwóch warstw granicznych przyjmujemy, że szybkość przenoszenia masy po obu stronach powierzchni międzyfazowej uzależniona jest wyłącznie od oporów dyfuzyjnych warstw zastępczych. Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Przy pominięciu oporu międzyfazowego stężenie na powierzchni rozdziału możemy wyznaczyć

Inżynieria Chemiczna i Procesowa Przy pominięciu oporu międzyfazowego stężenie na powierzchni rozdziału możemy wyznaczyć jako równowagowe: i możemy dzięki temu określić siły napędowe procesu transportu masy w każdej fazie: gdzie: pi , ci – stężenie składnika dyfundującego na powierzchni międzyfazowej. p, c – stężenia w głębi faz. Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Stężenia w głębi faz są łatwe do określenia i z

Inżynieria Chemiczna i Procesowa Stężenia w głębi faz są łatwe do określenia i z reguły znane, dysponując zależnością opisującą krzywą równowagi możemy określić stężenia panujące na powierzchni międzyfazowej: krzywa równowagi prosta przechodząca przez punkt (p, c) i (pi , ci) Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Z powyższego wykresu wynika, że stosunek stężeń w oby fazach

Inżynieria Chemiczna i Procesowa Z powyższego wykresu wynika, że stosunek stężeń w oby fazach zależy od oporów wnikania wyrażanych wartościami współczynników wnikania kc i kp oraz od kształtu krzywej równowagi. Operowanie w obliczeniach wartościami stężeń na powierzchni międzyfazowej jest niewygodne , dlatego też równanie przenikania doprowadza się do postaci, w której jako siła napędowa występuje różnica stężeń w głębi obu faz. Wymaga to zdefiniowania stężeń równoważnych, a mianowicie stężenia p*, jakie było by w równowadze w stosunku do roztworu ciekłego o stężeniu c, lub odwrotnie, stężenia równowagowego c* odpowiadającego ciśnieniu cząstkowemu p w mieszaninie gazowej Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Rozkład sił napędowych procesu wygląda następująco: Wykład nr 16 :

Inżynieria Chemiczna i Procesowa Rozkład sił napędowych procesu wygląda następująco: Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Zastosowanie stężeń równoważnych umożliwia określenie strumienia masy składnika w postaci

Inżynieria Chemiczna i Procesowa Zastosowanie stężeń równoważnych umożliwia określenie strumienia masy składnika w postaci zależności: współczynniki przenikania masy Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Rozkład stężeń w obu fazach zależy od położenia linii równowagi,

Inżynieria Chemiczna i Procesowa Rozkład stężeń w obu fazach zależy od położenia linii równowagi, w skrajnych przypadkach bardzo dobrej lub bardzo złej rozpuszczalności gazu w równaniach można stosować współczynniki wnikania gazu: Bardzo dobra rozpuszczalność gazu: ciecz gaz Wykład nr 16 : Teoria procesów wymiany masy główny opór wnikania masy znajduje się po stronie cieczy

Inżynieria Chemiczna i Procesowa Bardzo zła rozpuszczalność gazu: główny opór wnikania masy znajduje się

Inżynieria Chemiczna i Procesowa Bardzo zła rozpuszczalność gazu: główny opór wnikania masy znajduje się po stronie gazu ciecz Wykład nr 16 : Teoria procesów wymiany masy gaz

Inżynieria Chemiczna i Procesowa Jeżeli pomiędzy stężeniami równowagowymi istnieje proporcjonalność, np. w układzie gaz

Inżynieria Chemiczna i Procesowa Jeżeli pomiędzy stężeniami równowagowymi istnieje proporcjonalność, np. w układzie gaz – ciecz obowiązuje prawo Henry`ego : współczynnik przenikania masy może być łatwo określony. Zgodnie z zależnościami dla stężeń równoważnych możemy napisać: oraz dla stężeń na granicy faz: Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Czyli: eliminując z Wykład nr 16 : Teoria procesów wymiany

Inżynieria Chemiczna i Procesowa Czyli: eliminując z Wykład nr 16 : Teoria procesów wymiany masy całkowitą różnicę stężeń:

Inżynieria Chemiczna i Procesowa Postępując analogicznie Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Postępując analogicznie Wykład nr 16 : Teoria procesów wymiany masy

Inżynieria Chemiczna i Procesowa Dyskusja równań dla skrajnych wartości m potwierdza wnioski wyprowadzone wcześniej:

Inżynieria Chemiczna i Procesowa Dyskusja równań dla skrajnych wartości m potwierdza wnioski wyprowadzone wcześniej: m bardzo małe (słaba rozpuszczalność gazu w cieczy) opory po stronie gazu m bardzo duże (dobra rozpuszczalność gazu w cieczy) opory po stronie cieczy Wykład nr 16 : Teoria procesów wymiany masy