Aug 2004 doc IEEE 802 11 04 878r

  • Slides: 70
Download presentation
Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Inprocomm PHY Proposal for

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Inprocomm PHY Proposal for IEEE 802. 11 n: MASSDIC-OFDM Kim Wu, Chao-Yu Chen, Tsung-Yu Wu, Racy Cheng, Chi-chao Chao, Mao-Ching Chiu Inprocomm, Inc. Please refer to 04 -1002 for technical specifications and 04 -1018 for description of the LDPCC parity check matrices. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Content • Assumptions in

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Content • Assumptions in the proposal • Main features of the proposal • Proposed Multiple-Antenna Signal Space DIversity Coded OFDM (MASSDIC-OFDM) PHY System architecture – Modulation, precoding, FEC, proposed receiver structure • • • PLCP Frame format Preamble FEC Coding Compatibility to 802. 11 a Simulation Results Summary Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Assumptions in the proposal

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Assumptions in the proposal • The proposal is targeted at the physical layer • A MAC efficiency of 60% is assumed • To reach the 100 Mbps MAC Goodput, a minimum of 167 Mbps is required. • The proposal shall have another portion of MAC enhancement proposal. It can be amended later. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Main features of the

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Main features of the proposal 1/3 • This proposal inherits the good features of 802. 11 a OFDM standard – Spectrally efficient, robust against narrowband interference – Low complexity in channel equalization – No ISI and intercarrier interference (ICI) if channel max delay is less than the guard interval – Good performance by bit-interleaved convolutional coded modulation • This proposal uses MIMO (2 x 2 Mandatory) architecture to double the capacity. 4 x 4 and 3 x 3 configurations are optional • This proposal uses variable guard intervals to optimize the data rate against different channel delay spread • The operation bandwidth is 20 MHz. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Main features of the

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Main features of the proposal 2/3 • This proposal uses 256 -QAM to boost bandwidth efficiency • The number of subcarriers in an OFDM symbol is increased from 64 to 128 to gain guard interval efficiency. • This proposal explores the signal and space diversity without sacrificing BW via linear constellation precoding technique (LCP) (optional) – With low rate (e. g. 3/4) FEC, OFDM is shown to be inferior to singlecarrier transmission due to loss of multipath diversity – This problem is resolved by artificially making ICI among independent subcarriers – The LCP is a kind of signal-space diversity coding • Only PHY data rates more than 53 Mbps are newly defined • For HT devices transmitting legacy data rates, space-time block coding (STBC) schemes are used to enhance system performance. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Main features of the

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Main features of the proposal 3/3 • No more overhead is needed for the PHY header relative to legacy frame format • New preamble structures are designed to minimize the overhead without sacrificing performance. – Only one OFDM symbol time interval is used for channel estimation – Long training symbols transmit higher power than other fields. • The maximum data length is extended from 4096 bytes to 65536 bytes. • This proposal uses modern powerful error control code: extended irregular repeat-accumulated (e. IRA) low density parity check (LDPC) code to improve performance – Coding rates of 1/2, 2/3, 3/4 are separately designed with codeword length 2667 to optimize performance. – A new scheme to shorten codewords with hybrid code rate combination is proposed. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Proposed PHY: Multiple-Antenna Signal

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Proposed PHY: Multiple-Antenna Signal Space DIversity Coded OFDM (MASSDIC-OFDM) Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 MASSDIC-OFDM Tx Architecture for

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 MASSDIC-OFDM Tx Architecture for 2 x 2 configuration Scrambler Subcarrier grouping – – – – FEC p Spatial Processing QAM mapping Linear constellation Precoding Q Nc-IFFT L-CP RF Nt=2 ( 3, 4 optional), # of Tx antennas Nc=128, the number of subcarriers per antenna p: bit level interleaver (optional) Q : a 4 x 4 unitary matrix L-CP: 1200 or 800 ms cyclic prefix Spatial processing: spatial multiplexing or space time block coding FEC: e. IRA LDPC code (2676, 2007), (2676, 1784), (2676, 1338) Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Linear constellation precoding matrix

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Linear constellation precoding matrix Q - 4 x 4 case (optional) Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Subcarrier Grouping in LCP

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Subcarrier Grouping in LCP for 2 x 2 and 3 x 3 NT=2 … d 0 … Group 1 … d 49 d 50 Group 50 … d 99 d 100 … d 124 d 125 Antenna 1 … Group 1 … … d 74 d 75 Antenna 1 Submission d 174 d 175 d 199 Antenna 2 NT=3 d 0 … … d 99 d 100 Group 75 … d 149 d 150 Antenna 2 … d 199 d 200 … d 224 d 225 d 299 Antenna 3 Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Subcarrier Grouping in LCP

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Subcarrier Grouping in LCP for 4 x 4 NT=4 … Group 1 … d 0 … d 49 d 50 … d 99 Antenna 1 d 100 d 200 … d 149 d 150 Antenna 2 Submission … d 224 d 225 d 300 d 274 d 275 d 299 Group 100 … d 199 … Antenna 3 … Group 2 … Group 99 … d 324 d 325 … d 374 d 375 d 399 Antenna 4 Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Performance improvement with LCP

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Performance improvement with LCP (ML-soft output sphere decoding) Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 System Parameters Submission Kim

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 System Parameters Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 System Parameters Nt=2 (Other

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 System Parameters Nt=2 (Other data rates are the same as those in 802. 11 a) MAC Goodput Mbps --- 32 42 47 63 75 89 100 Info. Data Rate Mbps *X 53 70 79 105 125 148 167 QAM Constellation 16 16 64 64 256 FFT Size 128 128 Coding Rate R 1/2 (CC) 1/2 2/3 3/4 Pilot Tones --- 16 16 Data Tones 32 100 100 Info. Length ms --- 6. 4 6. 4 Cyclic Prefix ms --- 1200 800 800 Null Tones --- 12 12 Symbol Length ms --- 7. 6 7. 2 Channel Bit Rate Mbps --- 105 105 158 167 222 * Rate X is dedicated for the header. The K=7, CC encoded data is 16 -QAM modulated and inserted into the pilot tones of the first OFDM symbol of the first 2 antennas. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 System Parameters Nt=3 (Optional)

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 System Parameters Nt=3 (Optional) MAC Goodput Mbps 48 63 71 95 113 133 150 Info. Data Rate Mbps 80 105 118 158 188 222 250 QAM Constellation 16 16 16 64 64 256 FFT Size 128 128 Coding Rate R 1/2 2/3 3/4 Pilot Tones 16 16 Data Tones 100 100 Info. Length ms 6. 4 6. 4 Cyclic Prefix ms 1200 800 800 Null Tones 12 12 Symbol Length ms 7. 6 7. 2 Channel Bit Rate Mbps 159 159 237 250 333 Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 System Parameters Nt=4 (Optional)

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 System Parameters Nt=4 (Optional) MAC Goodput 64 84 95 126 150 178 200 Info. Data Rate Mbps 106 140 158 211 250 296 333 QAM Constellation 16 16 16 64 64 256 FFT Size 128 128 Coding Rate R 1/2 2/3 3/4 Pilot Tones 16 16 Data Tones 100 100 Info. Length ms 6. 4 6. 4 Cyclic Prefix ms 1200 800 800 Null Tones 12 12 Symbol Length ms 7. 6 7. 2 Channel Bit Rate Mbps 211 159 316 333 444 Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Proposed Receiver Structure for

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Proposed Receiver Structure for 2 x 2 case RF DU 1 RF DU 2 Information bits De. Scrambler MIMO Equalization (MMSE, DEF, ML-S) FECdecoder LCPdecoding (ML-S) De-int. QAM Demapping Demodulation Unit ( DU ) Sym. Detection Submission Synch. CP Remove FFT Channel Estimation, Equalization Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 PLCP Frame format Submission

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 PLCP Frame format Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 The FCS only checks

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 The FCS only checks for payload. First OFDM symbol PLCP preamble PHY Header Repeated PHY Header Pad bits Payload: 0 -65536 bytes FCS CRC-16 Data field Rate Reserved LCP Interleaver Length Service HCS Tail 6 bits 2 bits 1 bit 16 bits Submission K=7, R=1/2 CC encoded and inserted into the pilot tones of the first OFDM Symbol of the fist two antennas. Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Repeated Header • Using

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Repeated Header • Using pad bits to convey a repeated header information • If the number of pad bits NPAD > , then a 16 -QAM modulated repeated header is sequentially inserted into the following 32 data subcarriers – {d 53, d 59, d 65, d 71, d 78, d 84, d 90, d 96, d 3, d 9, d 15, d 21, d 28, d 34, d 40, d 46} of the 2 nd antenna, – and {d 53, d 59, d 65, d 71, d 78, d 84, d 90, d 96, d 3, d 9, d 15, d 21, d 28, d 34, d 40, d 46} of the 1 st antenna. • Then the number of pad bits is recalculated Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Operation for lower transmission

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Operation for lower transmission rates • For 802. 11 n Tx-Rx in 2 x 2 case operating in the lower transmission rate mode (6~54 Mbps), the mapped information is encoded as complex 2 x 2 Alamouti space-time code in the 2 Tx antennas • For 802. 11 n Tx-Rx in 4 x 4 case, the mapped information is encoded as complex space-time code in the 4 Tx antennas • For 802. 11 n Tx-Rx in 3 x 3 case, the third Tx antenna is turned off while the others are the same as the case in 2 x 2 Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 PLCP Preamble • N

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 PLCP Preamble • N mode preamble structure – An access mode that is intended for a scenario that all devices are 802. 11 n. • LN mode preamble structure – An access mode that is intended for a scenario that some of the devices are legacy and others are 802. 11 n. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 N mode Preamble structure

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 N mode Preamble structure 2 X 2 case 5. 6 ms 2. 4 ms X X X -X -X Y Y Y -Y -Y TX 1 TX 2 S 1 S 2 CP L 1 L 2 1. 6 ms 6. 4 ms CP Data 1 Data 2 Si’s: Short Training Symbols, X is the same as 802. 11 a, Y is orthogonal to X. Li’s: Long Training Symbols CP: Cyclic Prefix Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 Submission doc. : IEEE 802. 11 -04 -878/r 1 Kim Wu et

Aug 2004 Submission doc. : IEEE 802. 11 -04 -878/r 1 Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 1. Generate time domain

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 1. Generate time domain signals s 1 and s 2 from frequency domain signals S 1 and S 2 respectively via 128 -IFFT. 2. Take the first 16 samples of s 1 and s 2, namely u 1 and u 2. 3. Get unity v 1 and v 2 via Gram-Schmidt procedure from u 1 and u 2. 4. Set and Submission and Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 N mode Preamble structure

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 N mode Preamble structure 3 X 3 case 2. 4 ms 5. 6 ms X X X -X -X Y Y Y -Y -Y Z Z Z -Z -Z TX 1 TX 2 TX 3 S 1 S 2 S 3 CP L 1 CP L 2 CP L 3 1. 6 ms Data 1 Data 2 Data 3 6. 4 ms X , Y, Z orthogonal. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 N mode Preamble structure

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 N mode Preamble structure 4 X 4 case 2. 4 ms 5. 6 ms X X X -X -X Y Y Y -Y -Y Z Z Z -Z -Z W W W -X -W -W -W TX 1 TX 2 S 1 S 2 S 3 S 4 CP L 1 CP L 2 CP CP L 3 L 4 1. 6 ms 6. 4 ms Data 1 Data 2 Data 3 Data 4 X , Y, Z W orthogonal. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 More on the Long

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 More on the Long Training Symbols in the frequency domain with • The long training symbols are designed such that the Mean squared error (MSE) is minimized when ML-estimation is used • The long training symbols Li’s have the following properties: – The Li’s are orthogonal – The Li’s are nearly circular-shift orthogonal – Low PAPR Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Tone Interleaving for LTSs

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Tone Interleaving for LTSs ( 2 x 2 case) Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 PLCP Preamble • N

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 PLCP Preamble • N mode preamble structure – An access mode that is intended for a scenario that all devices are 802. 11 n. • LN mode preamble structure – An access mode that is intended for a scenario that some of the devices are legacy and others are 802. 11 n. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 LN mode Preamble structure

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 LN mode Preamble structure 2 X 2 case L-STS: The legacy short training symbols LTSs are the same as those in N mode Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 LN mode Preamble structure

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 LN mode Preamble structure 3 X 3 case LTS 1 is times the LTS 1 in N mode. LTS 2 and LTS 3 are 800 ns and 1200 ns cyclic shifts of LTS 1 respectively. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 LN mode Preamble structure

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 LN mode Preamble structure 4 X 4 case LTSs are the same as those in N mode Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Data Scrambler • Use

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Data Scrambler • Use the same scrambler as 802. 11 a Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Bit-level Interleaver for 2

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Bit-level Interleaver for 2 x 2 case Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Details of the Interleaver

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Details of the Interleaver • Denote by k the index before permutation and j the index after permutation. ( : the number of coded bits per OFDM symbol) • First permutation: • Second permutation: where. is obtained by concatenating two OFDM symbols that have been bit-interleaved by the above interleaver. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 FEC Coding • Using

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 FEC Coding • Using extended irregular repeat-accumulate (e. IRA) code (a kind of LDPC code) • For R=3/4: (2676, 2007) • For R=2/3: (2676, 1784) • For R=1/2: (2676, 1338) • For information length other than 2007 (1784 or 1338) use code shortening • Header is CC encoded with R=1/2 and K=7 (the same as 802. 11 a) Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Packet size accommodation with

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Packet size accommodation with concatenation and shortening 2007 (1784, 1338) bit data field 669 (892, 1338) bit parity 2676 bit codeword For long packets, codewords are concatenated 2676 -N bit zero pad N bit data field 669 (892, 1338) bit parity For short blocks, codeword shortening is adapted. The zero pad will not be transmitted. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Details of the proposed

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Details of the proposed FEC code • In general, the parity check matrix H of an (n, k) e. IRA code could be written as the following form : , where Submission is a random spare matrix, is the inverse of a lower-triangular matrix. Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • We decide the

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • We decide the column and row weight distribution of through Gaussian Approximation. • Then, we put 1’s on randomly and avoid the length-4 cycle. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • The generator matrix

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • The generator matrix is in the format of • Usually, it costs large complexity to calculate. However, the which is a full uppertriangle matrix can be implemented by a differential encoder Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 FEC encoder structure Submission

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 FEC encoder structure Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Packet Encoding • For

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Packet Encoding • For a short block, it is not efficient if we encode it in the original code rate. Hence, we choose higher code rate to decrease the number of parity check bits. • If the information block size is smaller than , we change the original code rate to a higher one according to the following table. The original code rate R=1/2 R=2/3 Submission The threshold The ( ) changed code rate 850 R=2/3 480 R=3/4 1000 R=3/4 Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Decoder Structure • For

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Decoder Structure • For a LDPC code, it can be described as a Tanner graph with variable nodes , check nodes and edges. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • Each check node

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • Each check node represents a parity check equation. • Check node j is connected to a variable node i if and only if the element hji in the parity check matrix H is a 1 • Through the Tanner graph, belief propagation algorithm is used to decode the e. IRA code. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Codec Complexity Analysis •

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Codec Complexity Analysis • There are two kinds of operations in the decoding process: addition and check node operation (*). • The two operations have comparable complexity. • The degree of a node means the number of edges connected to the node. • We define and respectively as the number of variable and check nodes of degree ; and as the maximum degree of variable and check nodes. *: Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • There additions and

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 • There additions and check node operations in one iteration. Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 • The weight distributions

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 • The weight distributions of column and row are: Code Rate R=1/2 R=2/3 R=3/4 Submission Nv(i) Nc(i) i: 1 1 i: 1 2 4 1337 656 2 3 5 682 4 6 657 9 7 681 10 1 i: 1 1 891 453 1331 2 3 4 668 1562 445 454 11 225 438 12 444 Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 • In our e.

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 • In our e. IRA code, the numbers of operations per iteration are as follows: Code Rate addition chk_op Total R=1/2 15478 39603 55081 R=2/3 12007 63642 75649 R=3/4 8246 75555 83801 Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 The Viterbi decoding complexity

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 The Viterbi decoding complexity for Convolutional code (802. 11 a) with code word length 2676 Code rate Addition Ratio to e. IRA per iteration R=1/2 256896 4. 6643 R=2/3 342528 4. 5276 R=3/4 385344 4. 5984 (*): Here, we ignore the calculation of branch metric and the memory trace-back process. And, we assume that the complexity of comparing is equal to that of addition. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Compatibility to 802. 11

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Compatibility to 802. 11 a • The proposed 802. 11 n is compatible to 802. 11 a by defining the same PHY and MAC as that of 802. 11 a in low data rate mode (6 Mbps~54 Mbps mode). • A 802. 11 n device can distinguish between 802. 11 a and 802. 11 n packets by detecting different format of packet preambles. • A Legacy device can recognize the packet from 802. 11 n devices in LN mode. • Upon detection of 802. 11 a packets, the 802. 11 n device turns to operate in the 802. 11 a mode. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Simulation Results – PER

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Simulation Results – PER vs. SNR performance for fading channel model channel B, C, D, E and AWGN channel. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO AWGN Channel PER vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel B PER vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel C PER vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel D PER vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel E PER vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Complexity relative to 802.

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Complexity relative to 802. 11 a 802. 11 n 167 Mbps Ratio to 802. 11 a 802. 11 n 54 Mbps Ratio to 802. 11 a 54 Mbps #multipliers for Equalization 12. 37 4 (MMSE receiver for Nt=2) 1 #multipliers for Equalization with LCP (Sphere decoding for LCP) 791. 68 4*4^3=256(the size of LP is 4 x 4; the complexity of SD is 4^3) 1 #addition for FEC(R=1/2) 6. 65 2. 15 ( average 10 iterations when per<0. 1) 1(viterbi decoder) #addition for FEC(R=2/3) 6. 83 2. 21 (average 10 iterations when per<0. 1) 1(viterbi decoder) #addition for FEC(R=3/4) 6. 71 2. 17 (average 10 iterations when per<0. 1) 1(viterbi decoder) #multipliers for FFT 7. 22 128 log(128)/64 log(64) =2. 33 1 Submission Kim Wu et al. , MASSDIC-OFDM

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Summary • A PHY

doc. : IEEE 802. 11 -04 -878/r 1 Aug 2004 Summary • A PHY proposal MASSDIC-OFDM is with several unique features – – – Efficient preamble structure Efficient Convey of Header(s) Optional Signal Space diversity coding (LCP) Advanced e. IRA LDPCC (linear encoding complexity) Efficient block shortening • The complexity is estimated and compared to that of 802. 11 a 54 Mbps • Please refer to 04 -1002/r 0 for technical specifications and 04 -1018/r 0 for details of the LDPCC parity check matrix. Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Backup Slides Submission Kim

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 Backup Slides Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO AWGN Channel PER vs. Eb/No for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel B PER vs. Eb/No for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel C PER vs. Eb/No for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel D PER vs. Eb/No for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel E PER vs. Eb/No for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO AWGN Channel : throughput vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel B : Throughput vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel C : throughput vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel D : throughput vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO

Aug 2004 doc. : IEEE 802. 11 -04 -878/r 1 2 X 2 MIMO Channel E : throughput vs. SNR for Different Data Rates Submission Kim Wu et al. , MASSDIC-OFDM