Asteroseismology The Real Music of the Spheres 1

  • Slides: 69
Download presentation
Asteroseismology The Real Music of the Spheres 1

Asteroseismology The Real Music of the Spheres 1

Sir Arthur Stanley Eddington: The Internal Constitution of the Stars 1926 Sir Arthur Eddington

Sir Arthur Stanley Eddington: The Internal Constitution of the Stars 1926 Sir Arthur Eddington (1882 – 1944) At first sight it would seem that the deep interior of the sun and stars is less accessible to scientific investigation than any other region of the universe. 2

Our telescopes may probe farther and farther into the depths of space; but how

Our telescopes may probe farther and farther into the depths of space; but how can we ever obtain certain knowledge of that which is hidden behind substantial barriers? 3

What appliance can pierce through the outer layers of a star and test the

What appliance can pierce through the outer layers of a star and test the conditions within? 4

5

5

3 D oscillations – stars radial modes Cepheids P 1/P 0= 0. 7 string

3 D oscillations – stars radial modes Cepheids P 1/P 0= 0. 7 string P 1/P 0= 0. 33 6

Cepheid variables Cepheid Horn by Zoltan Kollath & Geza Kovács, Konkoly Observatory, Budapest; Robert

Cepheid variables Cepheid Horn by Zoltan Kollath & Geza Kovács, Konkoly Observatory, Budapest; Robert Buchler, Florida 7

A giant solar-like oscillator http: //www. lcse. umn. edu/ 8

A giant solar-like oscillator http: //www. lcse. umn. edu/ 8

Asteroseismology 9

Asteroseismology 9

Angular structure of the modes n n = number of radial nodes = total

Angular structure of the modes n n = number of radial nodes = total number of surface nodes m = number of surface nodes that are lines of longitude n – m = number of surface nodes that are lines of latitude 10

11

11

Dipole modes l=1, m=-1 l=1, m=0 l=1, m=+1 12

Dipole modes l=1, m=-1 l=1, m=0 l=1, m=+1 12

Quadrupole modes l=2, m=-2 l=2, m=-1 l=2, m=0 13

Quadrupole modes l=2, m=-2 l=2, m=-1 l=2, m=0 13

Rotation of the sun 14

Rotation of the sun 14

p modes and g modes J. P. Cox, 1980, Theory of Stellar Pulsation, Princeton

p modes and g modes J. P. Cox, 1980, Theory of Stellar Pulsation, Princeton University Press. 15

p modes and g modes p modes (n, ) = (8, 100), (8, 2)

p modes and g modes p modes (n, ) = (8, 100), (8, 2) g mode (n, ) = (10, 5) Gough et al. , 1996, Science, 272, 1281 16

The sun as a star - Bi. SON 17

The sun as a star - Bi. SON 17

The sun as a star - GOLF large separation small separation 18

The sun as a star - GOLF large separation small separation 18

An asteroseismic HR diagram 19

An asteroseismic HR diagram 19

Solar-like Oscillations in Centauri Bedding, T. , et al. 2004, Ap. J, 614, 380

Solar-like Oscillations in Centauri Bedding, T. , et al. 2004, Ap. J, 614, 380 n UVES & UCLES 42 oscillation frequencies n ℓ = 1 -3 n n n Mode lifetimes only 1 -2 days Noise level = 2 cm s-1! 20

Modelling Cen A and B n n n Stellar model in good agreement with

Modelling Cen A and B n n n Stellar model in good agreement with the astrometric, photometric, spectroscopic and asteroseismic data t = 6. 52 ± 0. 30 Gyr Initial Y = 0. 275 ± 0. 010 Initial Z/X = 0. 043 ± 0. 002 Radii of both stars determined with high precision (errors smaller than 0. 3%) compatible with interferometric results of Kervella et al. (differences smaller than 1%) Eggenberger, P. , Charbonnel, C. , Talon, S. , Meynet, G. , Maeder, A. , Carrier, F. , Bourban, G. 2004, A&A, 417, 235 21

Oscillations and planets n Stellar activity, convection and pulsation are “noise” to planet-hunters n

Oscillations and planets n Stellar activity, convection and pulsation are “noise” to planet-hunters n Planets are “noise” to asteroseismologists n The two fields are not just complementary n It is mandatory to do both together at cm s-1 precision 22

 Arae n V = 5. 15 n G 3 IV-V n Prot =

Arae n V = 5. 15 n G 3 IV-V n Prot = 22 days n 14 M planet; Porb = 9. 55 days n 43 p-modes detected n 8 -day single-site HARPS study Bouchy, F. , Bazot, M. , Santos, N. C. , Vauclair, S. , Sosnowska, D. , 2005, A&A, 440, 609 23

24

24

25

25

 Arae – the 14 M planet Bouchy, F. , Bazot, M. , Santos,

Arae – the 14 M planet Bouchy, F. , Bazot, M. , Santos, N. C. , Vauclair, S. , Sosnowska, D. , 2005, A&A, 440, 609 26

 Arae – ~8 -min pulsations Bouchy, F. , Bazot, M. , Santos, N.

Arae – ~8 -min pulsations Bouchy, F. , Bazot, M. , Santos, N. C. , Vauclair, S. , Sosnowska, D. , 2005, A&A, 440, 609 27

 Arae Bouchy, F. , Bazot, M. , Santos, N. C. , Vauclair, S.

Arae Bouchy, F. , Bazot, M. , Santos, N. C. , Vauclair, S. , Sosnowska, D. , 2005, A&A, 440, 609 28

Resolving pulsations in the atmospheres of ro. Ap stars Don Kurtz Vladimir Elkin Gautier

Resolving pulsations in the atmospheres of ro. Ap stars Don Kurtz Vladimir Elkin Gautier Mathys 29

30

30

31

31

Theoretical expectation = 0. 1 = 0. 7 Saio, 2005, MNRAS, 360, 1022 32

Theoretical expectation = 0. 1 = 0. 7 Saio, 2005, MNRAS, 360, 1022 32

HD 101065 Ba. II Nd. III 33

HD 101065 Ba. II Nd. III 33

 ~ 10 -2 ~ 10 -5 34

~ 10 -2 ~ 10 -5 34

HD 99563 35

HD 99563 35

 ~ 10 -2 ~ 10 -5 << 10 -5 36

~ 10 -2 ~ 10 -5 << 10 -5 36

Gautschy, Saio & Harzenmoser, 1998, MNRAS, 301, 31 37

Gautschy, Saio & Harzenmoser, 1998, MNRAS, 301, 31 37

38

38

39

39

40

40

HD 154708 Hubrig, S. , Nesvacil, N. , Schöller, M. , North, P. ,

HD 154708 Hubrig, S. , Nesvacil, N. , Schöller, M. , North, P. , Mathys, G. , Kurtz, D. W. , Wolff, B. , Szeifert, T. , Cunha, M. S. , Elkin, V. G. , 2005, A&A, 440, L 37 41

HD 154708 Kurtz, D. W. , Elkin, V. G. , Mathys, G. , Hubrig,

HD 154708 Kurtz, D. W. , Elkin, V. G. , Mathys, G. , Hubrig, Wolff, B. , Savanov, I. , 2006, MNRAS, submitted 42

We are seeing the ro. Ap star atmospheres in more detail than is possible

We are seeing the ro. Ap star atmospheres in more detail than is possible for any star other than the sun 43

White dwarfs – g-mode pulsators 44

White dwarfs – g-mode pulsators 44

PG 1159 -035 45

PG 1159 -035 45

PG 1159 -035 n Tsurf = 123, 000 - 124, 000 K; log g

PG 1159 -035 n Tsurf = 123, 000 - 124, 000 K; log g 7 n 1000 f 2600 Hz; 385 P 1000 s n 125 frequencies; >100 modes n M = 0. 586 ± 0. 003 M n the star is compositionally stratified 46

BPM 37093 n DAV n M = 1. 09 M n Teff = 11730

BPM 37093 n DAV n M = 1. 09 M n Teff = 11730 K n Partially crystallized C-O core Metcalfe, T. S. , Montgomery, M. H. , Kanaan, A. 2004, Ap. J, 605, 133 Kanaan et al. , 2005, A&A, 432, 219 Brassard & Fontaine, 2005, Ap. J, 622, 572 47

BPM 37093 48

BPM 37093 48

p modes: EC 14026 stars - sd. BV 49

p modes: EC 14026 stars - sd. BV 49

PG 1336 + 018 50

PG 1336 + 018 50

p modes: Cephei stars 51

p modes: Cephei stars 51

HD 129929 = V 836 Cen 20 -yr multicolour photometry Core overshooting with a.

HD 129929 = V 836 Cen 20 -yr multicolour photometry Core overshooting with a. OV = 0. 1 Non-rigid rotation: 4 times faster near core Aerts et al. , 2003, Science, 300, 926 Asteroseismology of HD 129929: Core overshooting and nonrigid rotation 52

g modes: SPB stars 53

g modes: SPB stars 53

Continuous coverage - MOST n n n HD 163830 SPB star V = 9.

Continuous coverage - MOST n n n HD 163830 SPB star V = 9. 3 B 5 II/III 37 days coverage 20 frequencies detected 54

HD 163830 Aerts, C. ; De Cat, P. ; Kuschnig, R. ; Matthews, J.

HD 163830 Aerts, C. ; De Cat, P. ; Kuschnig, R. ; Matthews, J. M. ; Guenther, D. B. ; Moffat, A. F. J. ; Rucinski, S. M. ; Sasselov, D. ; Walker, G. A. H. ; Weiss, W. W. , 2006, Ap. J, 642, L 65 55

HD 163830 Aerts, C. ; De Cat, P. ; Kuschnig, R. ; Matthews, J.

HD 163830 Aerts, C. ; De Cat, P. ; Kuschnig, R. ; Matthews, J. M. ; Guenther, D. B. ; Moffat, A. F. J. ; Rucinski, S. M. ; Sasselov, D. ; Walker, G. A. H. ; Weiss, W. W. , 2006, Ap. J, 642, L 65 56

Dome C - Concordia 57

Dome C - Concordia 57

58

58

59

59

Seeing 2003 -2004: statistics 50% 0. 5 0. 1 0. 3 0. 5 1

Seeing 2003 -2004: statistics 50% 0. 5 0. 1 0. 3 0. 5 1 3 Seeing distribution (log-normal) N data 17148 Std deviation 0. 39 Mean seeing (arcsec) 0. 65 Seeing max 5. 22 Median seeing 0. 54 Seeing min 0. 10 60

61

61

What appliance can pierce through the outer layers of a star and test the

What appliance can pierce through the outer layers of a star and test the conditions within? 62

63

63

Stellarmusicno 1 Stellar acoustics as input for music composition Zoltán Kolláth Konkoly Observatory, Budapest,

Stellarmusicno 1 Stellar acoustics as input for music composition Zoltán Kolláth Konkoly Observatory, Budapest, Hungary Jenő Keuler Institute for Musicology, Budapest, Hungary http: //www. konkoly. hu/staff/kollath/stellarmusic/ 64

Photometry - HR 1217 WET Xcov 20 s = 14 mag precision Kurtz et

Photometry - HR 1217 WET Xcov 20 s = 14 mag precision Kurtz et al. , 2005, MNRAS, 358, 651 65

What can you do with the frequencies in ro. Ap stars? – HR 1217

What can you do with the frequencies in ro. Ap stars? – HR 1217 66

A model and prediction Cunha, M. 1999, Ph. D thesis, Cambridge Cunha, M. Gough,

A model and prediction Cunha, M. 1999, Ph. D thesis, Cambridge Cunha, M. Gough, D. , 2001, MNRAS, 319, 1020 Bigot et al. 2000, A&A, 356, 218 67

HR 1217 photometric campaigns 68

HR 1217 photometric campaigns 68

HR 1217 photometric campaigns 69

HR 1217 photometric campaigns 69