Quantum Communication Complexity Richard Cleve Institute for Quantum

  • Slides: 46
Download presentation
Quantum Communication Complexity Richard Cleve Institute for Quantum Computing University of Waterloo Aug 2,

Quantum Communication Complexity Richard Cleve Institute for Quantum Computing University of Waterloo Aug 2, 2005 1

1. Preliminaries 2

1. Preliminaries 2

How does quantum information affect the communication costs of information processing tasks? • Potential

How does quantum information affect the communication costs of information processing tasks? • Potential applications • Context in which to explore interesting properties of quantum information • Interplay with quantum algorithms, nonlocality, and information theory 3

How much classical information in n qubits? 2 n 1 complex numbers are needed

How much classical information in n qubits? 2 n 1 complex numbers are needed to describe an arbitrary n-qubit pure quantum state: 000 + 001 + 010 + + 111 Does this mean that an exponential amount of classical information is somehow stored in n qubits? No … Holevo’s Theorem [1973] implies: cannot extract more than n bits from n qubits 4

Holevo’s Theorem Easy case: ψ n qubits U b 1 b 2. . .

Holevo’s Theorem Easy case: ψ n qubits U b 1 b 2. . . bn cannot convey more than n bits! Hard case (the general case): b 1 b 2 b 3 bn ψ n qubits m qubits 0 0 0 U b 1 b 2 b 3 bn bn+1 bn+2 bn+3 bn+4 bn+m (proof omitted here) 5

Entanglement & signaling Example of an entangled state: qubit Can be used to perform

Entanglement & signaling Example of an entangled state: qubit Can be used to perform some intriguing feats, such as teleportation, superdense coding, and “pseudo-telepathy” Can entangled states be used to “signal instantaneously”? No … any operation performed on one qubit has no affect on the state of the other qubit 6

Basic communication scenario Goal: convey n bits from Alice to Bob x 1 x

Basic communication scenario Goal: convey n bits from Alice to Bob x 1 x 2 xn Alice Resources Bob x 1 x 2 xn 7

Basic communication scenario Bit communication: Cost: n Bit communication & prior entanglement: Cost: n

Basic communication scenario Bit communication: Cost: n Bit communication & prior entanglement: Cost: n [H ’ 73] [BW ’ 92] Qubit communication: Cost: n Qubit communication & prior entanglement: Cost: n/2 superdense coding 8

2. Communication complexity 9

2. Communication complexity 9

Classical communication complexity x 1 x 2 xn y 1 y 2 yn f

Classical communication complexity x 1 x 2 xn y 1 y 2 yn f (x, y) E. g. equality function: f (x, y) = 1 if x = y, and 0 if x y Any deterministic protocol requires n bits communication Probabilistic protocols can solve with only O(log(n/ )) bits communication (error probability ) [Yao ’ 79] 10

Classical communication complexity x 1 x 2 xn y 1 y 2 yn x

Classical communication complexity x 1 x 2 xn y 1 y 2 yn x = y? Probabilistic protocol for Equality ( = 1/n): px(T) = x 0 + x 1 T + x 2 T 2 + … + xn 1 T n 1 py(T) = y 0 + y 1 T + y 2 T 2 + … + yn 1 T n 1 Arithmetic modulo m, for a prime m between n 2 and 2 n 2 Alice: pick random t {0, 1, …, m 1} send (t, px(t ) mod m) to Bob (this is only 4 log (n) bits) Bob: accept iff px(t) = py(t) mod m (err prob < n/n 2 = 1/n) 11

Quantum communication complexity x 1 x 2 xn y 1 y 2 yn Qubit

Quantum communication complexity x 1 x 2 xn y 1 y 2 yn Qubit communication qubits Prior entanglement entangled qubits x 1 x 2 xn y 1 y 2 yn bits [Y ’ 93] [CB ’ 97] f (x, y) 12

Appointment scheduling 1 2 3 4 5 . . . n x= 01101… 0

Appointment scheduling 1 2 3 4 5 . . . n x= 01101… 0 1 2 3 4 5 . . . n y= 10011… 1 i (xi = yi = 1) Classically, (n) bits necessary to succeed with prob. 3/4 For all > 0, O(n 1/2 log n) qubits sufficient for error prob. < [KS ’ 87] [BCW ’ 98] 13

Search problem 1 Given: 2 3 4 5 6 . . . n x=

Search problem 1 Given: 2 3 4 5 6 . . . n x= 000010… 1 log n i 1 b b x accessible via queries i b b xxii Ux Alternate notation Goal: find i {1, 2, …, n} such that xi = 1 Classically: (n) queries are necessary Quantum mechanically: O(n 1/2) queries are sufficient [G ’ 96] 14

1 2 3 4 5 6 . . . n Alice x= 011010… 0

1 2 3 4 5 6 . . . n Alice x= 011010… 0 Bob y= 100110… 1 x y = 0 0 1 0 … 0 i x y 0 0 b i y x x y 0 0 b Bob Alice Bob Communication per x y-query: 2(log n + 3) = O(log n) 15

Appointment scheduling: epilogue Bit communication: Cost: θ( n) Bit communication & prior entanglement: Cost:

Appointment scheduling: epilogue Bit communication: Cost: θ( n) Bit communication & prior entanglement: Cost: θ( n 1/2) [R ’ 02] [AA ’ 03] Qubit communication: nn 1/21/2)log(n)) Cost: θ( O( Qubit communication & prior entanglement: Cost: θ( n 1/2) 16

Restricted version of equality Precondition (i. e. promise): either x = y or (x,

Restricted version of equality Precondition (i. e. promise): either x = y or (x, y) = n/2 Hamming distance Classically, (n) bits communication are still necessary for an exact solution Quantum mechanically, O(log n) qubits communication are sufficient for an exact solution (It’s a distributed variant of the Deutsch-Jozsa problem … a “constant” vs. “balanced” distinguishing problem) [BCW ’ 98] 17

Classical lower bound (*skipped) Theorem: If S {0, 1}n has the property that, for

Classical lower bound (*skipped) Theorem: If S {0, 1}n has the property that, for all x, x′ S, their intersection size is not n/4 then S < 1. 99 n Let some protocol solve restricted equality with k bits comm. ● 2 k conversations of length k ● approximately 2 n/ n input pairs (x, x), where Δ(x) = n/2 Therefore, 2 n/2 k n input pairs (x, x) that yield same conv. C Define S = {x : Δ(x) = n/2 and (x, x) yields conv. C } For any x, x′ S, input pair (x, x′ ) also yields conversation C Therefore, Δ(x, x′) n/2, implying intersection size is not n/4 Theorem implies 2 n/2 k n < 1. 99 n , so k > 0. 007 n [Frankl and Rödl, 1987] 18

Quantum protocol For each x {0, 1}n, define Protocol: 1. Alice sends x to

Quantum protocol For each x {0, 1}n, define Protocol: 1. Alice sends x to Bob (log(n) qubits) 2. Bob measures state in a basis that includes y Correctness of protocol: If x = y then Bob’s result is definitely y If (x, y) = n/2 then x y = 0, so result is definitely not y Question: How much communication if error prob. ¼ is ok? Answer: just 2 bits are sufficient! 19

Exponential quantum vs. classical separation in bounded-error models : a log(n)-qubit state U: unitary

Exponential quantum vs. classical separation in bounded-error models : a log(n)-qubit state U: unitary operation (described classically) on log(n) qubits M: two-outcome measurement Output: result of applying M to U O(log n) quantum vs. (n 1/4 / log n) classical communication [R ’ 99] 20

3. Quantum speed-up is not always possible 21

3. Quantum speed-up is not always possible 21

Inner product IP(x, y) = x 1 y 1 + x 2 y 2

Inner product IP(x, y) = x 1 y 1 + x 2 y 2 + + xn yn mod 2 Classically, (n) bits of communication are required, even for bounded-error protocols Quantum protocols also require (n) communication [KY ’ 95] [CNDT ’ 98] [NS ’ 02] 22

Recall Deutsch’s problem Let f : {0, 1} be of the form f(x) =

Recall Deutsch’s problem Let f : {0, 1} be of the form f(x) = a 1 x + a 0 mod 2 Given: black box for f Goal: determine a 1 (a 1 = 0 implies “constant”; a 1 = 1 implies “balanced”) Classically, 2 queries are necessary Quantum mechanically, 1 query is sufficient 23

Bernstein-Vazirani problem (multidimensional Deutsch problem) Let f(x 1, x 2, …, xn) = a

Bernstein-Vazirani problem (multidimensional Deutsch problem) Let f(x 1, x 2, …, xn) = a 1 x 1 + a 2 x 2 + + an xn + a 0 mod 2 Given: 0 x 1 H 0 x 2 H H 0 xn. H 1 b H f H x 1 a 1 H x 2 a 2 H H xn an H b 1 f( x 1, x 2, …, xn) Goal: determine a 1, a 2 , …, an Classically, n +1 queries are necessary Quantum mechanically, 1 query is sufficient 24

Lower bound for inner product IP(x, y) = x 1 y 1 + x

Lower bound for inner product IP(x, y) = x 1 y 1 + x 2 y 2 + + xn yn mod 2 Proof: x 1 x 2 xn y 1 y 2 yn z Alice and Bob’s IP protocol inverted x 1 x 2 xn y 1 y 2 yn z IP(x, y) 25

Lower bound for inner product IP(x, y) = x 1 y 1 + x

Lower bound for inner product IP(x, y) = x 1 y 1 + x 2 y 2 + + xn yn mod 2 Proof: x 1 x 2 xn 0 0 0 1 H H H x 1 x 2 xn H 1 H Alice and Bob’s IP protocol inverted x 1 x 2 xn [BV, 1993] Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo’s Theorem) 26

4. Simultaneous messages to a third party 27

4. Simultaneous messages to a third party 27

Equality revisited in simultaneous message model x 1 x 2 xn y 1 y

Equality revisited in simultaneous message model x 1 x 2 xn y 1 y 2 yn f (x, y) Equality function: f (x, y) = 1 if x = y 0 if x y Exact protocols: require 2 n bits communication 28

Equality revisited in simultaneous message model x 1 x 2 xn 1 0 1

Equality revisited in simultaneous message model x 1 x 2 xn 1 0 1 1 y 1 y 2 yn 1 0 1 1 f (x, y) Bounded-error protocols with a shared random key: require only O(1) bits communication Error-correcting code: C(x) = 0 1 1 1 0 0 1 1 0 C(y) = 0 1 1 0 0 0 1 0 random k 29

Equality revisited in simultaneous message model x 1 x 2 xn Bounded-error protocols without

Equality revisited in simultaneous message model x 1 x 2 xn Bounded-error protocols without a shared key: y 1 y 2 yn f (x, y) Classical: θ(n 1/2) Quantum: θ(log n) [A ’ 96] [NS ’ 96] [BCWW ’ 01] 30

Quantum fingerprints Question 1: how many orthogonal states in k qubits? Answer: 2 k

Quantum fingerprints Question 1: how many orthogonal states in k qubits? Answer: 2 k Question 2: how many almost orthogonal* states in k qubits? (* where | x y | ≤ ) k Answer: 2 c 2 , for some constant c > 0 Question 3: does this enable k qubits to store c 2 k bits? (In other words, log n + O(1) qubits to store n bits? ) Answer: no … recall Holevo’s Theorem However, it does enable one to check if x = y or x ≠ y by only examining x and y 31

Quantum fingerprints Let 000 , 001 , …, 111 be 2 n states on

Quantum fingerprints Let 000 , 001 , …, 111 be 2 n states on log n + O(1) qubits such that | x y | ≤ for all x ≠ y Given x y , one can check if x = y or x ≠ y as follows: 0 x y H H if x = y, Pr[output = 0] = 1 ≠ y, Pr[output = 0] = (1+ 2)/2 S W A P Intuition: 0 x y + 1 y x 32

Quantum protocol for equality in simultaneous message model x 1 x 2 xn y

Quantum protocol for equality in simultaneous message model x 1 x 2 xn y 1 y 2 yn x y Orthogonality test 33

5. One-way communication 34

5. One-way communication 34

Hidden matching problem Inputs: x {0, 1}n M= matching on {1, 2, …, n}

Hidden matching problem Inputs: x {0, 1}n M= matching on {1, 2, …, n} (partition into pairs) Output: (i, j, xi xj), such that (i , j ) M Only one-way communication (Alice to Bob) is permitted Quantum protocol can be exponentially more efficient than any classical protocol—even with a shared key [BJK ’ 04] 35

Hidden matching problem Inputs: x {0, 1}n M= matching on {1, 2, …, n}

Hidden matching problem Inputs: x {0, 1}n M= matching on {1, 2, …, n} Output: (i, j, xi xj), (i, j) M Classically, one-way communication is ( n) for bounded-error even with a shared classical key (the proof is omitted here) Intuition: With Alice’s message Bob can repeat his side of the protocol using several edge-disjoint matchings, which yields information about several xi xj bits … 36

Hidden matching problem Inputs: x {0, 1}n M= matching on {1, 2, …, n}

Hidden matching problem Inputs: x {0, 1}n M= matching on {1, 2, …, n} Output: (i, j, xi xj), (i, j ) M Quantum protocol that uses only log n qubits: Alice sends (log n qubits) to Bob measures in the basis { i j | (i, j ) M }, and then uses the outcome’s relative phase to deduce xi xj 37

6. Nonlocality revisited 38

6. Nonlocality revisited 38

Communication complexity with distributed outputs (1 bit) y (1 bit) a (1 bit) where

Communication complexity with distributed outputs (1 bit) y (1 bit) a (1 bit) where a, b, x, y satisfy some relation b (1 bit) inputs: x outputs: E. g. “Bell’s Theorem” Goal: a b = x y with zero communication With classical resources, Pr[a b = x y] ≤ 0. 75 With 00 + 11 prior entanglement, Pr[a b = x y] = 0. 853… [B ’ 64] [CHSH ’ 69] 39

Distributed outputs: “spooky Deutsch- Jozsa” inputs: x (n bits) y (n bits) outputs: a

Distributed outputs: “spooky Deutsch- Jozsa” inputs: x (n bits) y (n bits) outputs: a (log n bits) b (log n bits) Precondition: either x = y or (x, y) = n/2 Required postcondition: a = b iff x = y With classical resources, (n) bits of communication needed for an exact solution With ( 00 + 11 )log n prior entanglement, no communication is needed at all [BCT ’ 99] 40

Distributed-output restricted equality Bit communication: Cost: θ( n) Bit communication & prior entanglement: Cost:

Distributed-output restricted equality Bit communication: Cost: θ( n) Bit communication & prior entanglement: Cost: zero Qubit communication: Cost: log n Qubit communication & prior entanglement: Cost: zero 41

Distributed-output hidden matching Inputs: x {0, 1}n M= matching on {1, 2, …, n}

Distributed-output hidden matching Inputs: x {0, 1}n M= matching on {1, 2, …, n} (partition into pairs) Outputs: a {0, 1}log n (b, i, j), such that 1. (i, j) M 2. (a b)·(i j) = xi xj With prior entanglement, no communication necessary; without prior entanglement, one-way communication is ( n), even to achieve success probability ¾ [B ’ 04] 42

Some open problems • Develop some “Killer Apps” • Exponential separation between one-round quantum

Some open problems • Develop some “Killer Apps” • Exponential separation between one-round quantum and multi-round classical? • Are the qubit communication and the prior entanglement models equivalent? • The distributed-output scenario can be viewed as a two-prover interactive proof system, raising questions about their expressive power in a quantum world (may come up on Thursday …) 43

Selected references I • Z. Bar-Yossef, T. S. Jayram, I. Kerenidis, “Exponential separation of

Selected references I • Z. Bar-Yossef, T. S. Jayram, I. Kerenidis, “Exponential separation of quantum and classical one-way communication complexity”, Proceedings of 36 th Annual ACM Symposium on Theory of Computing, pages 128 -137, 2004. • G. Brassard, “Quantum communication complexity”, Foundations of Physics, 33(11): 15931616, 2003. • R. de Wolf, “Quantum communication and complexity”, Theoretical Computer Science, 287(1): 337 -353, 2002. Available at http: //homepages. cwi. nl/~rdewolf/ • G. Brassard, R. Cleve, A. Tapp, “Cost of exactly simulating quantum entanglement with classical communication”, Physical Review Letters, 83(9): 1874 -1877, 1999. • H. Buhrman, R. Cleve, W. van Dam, “Quantum entanglement and communication complexity”, SIAM Journal on Computing, 2000. • H. Buhrman, R. Cleve, A. Wigderson, “Quantum vs. classical communication and computation”, Proceedings of the 30 th Annual ACM Symposium on Theory of Computing, pages 63 -68, 1998. • R. Cleve, H. Buhrman, “Substituting quantum entanglement for communication”, Physical Review A, 56(2): 1201 -1204, 1997. 44

Selected references II • R. Cleve, W. van Dam, P. Høyer, A. Tapp, “Quantum

Selected references II • R. Cleve, W. van Dam, P. Høyer, A. Tapp, “Quantum entanglement and the communication complexity of the inner product function”, Lecture Notes in Computer Science, 1509: 61 -74, 1999. • A. Holevo, “Bounds on the quantity of information transmitted by a quantum communication channel”, Problems of Information Transmission, 9: 177 -183, 1973. • B. Kalyanasundaram, G. Schnitger, “The probabilistic communication complexity of set intersection”, Proceedings of 2 nd Annual IEEE Conference on Structure in Complexity Theory, pages 41 -47, 1987. • I. Kremer, Quantum Communication, Master’s thesis, Hebrew University, Computer Science Department, 1995. • R. Raz, “Exponential separation of quantum and classical communication complexity”, Proceedings of 31 st Annual ACM Symposium on Theory of Computing, pages 358 -367, 1999. • A. C. -C. Yao, “Some questions related to distributed computing”, Proceedings of 11 th Annual ACM Symposium on Theory of Computing, pages 209 -213, 1979. • A. C. -C. Yao, “Quantum circuit complexity”, Proceedings of 34 th Annual IEEE Symposium on Foundations of Computer Science, pages 352 -361, 1993. 45

46

46