Imagebased rendering Michael F Cohen Microsoft Research Computer
![Image-based rendering Michael F. Cohen Microsoft Research Image-based rendering Michael F. Cohen Microsoft Research](https://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-1.jpg)
Image-based rendering Michael F. Cohen Microsoft Research
![Computer Graphics Output Image Synthetic Camera Model Computer Graphics Output Image Synthetic Camera Model](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-2.jpg)
Computer Graphics Output Image Synthetic Camera Model
![Computer Vision Output Model Real Scene Real Cameras Computer Vision Output Model Real Scene Real Cameras](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-3.jpg)
Computer Vision Output Model Real Scene Real Cameras
![Combined Output Image Synthetic Camera Model Real Scene Real Cameras Combined Output Image Synthetic Camera Model Real Scene Real Cameras](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-4.jpg)
Combined Output Image Synthetic Camera Model Real Scene Real Cameras
![But, vision technology falls short Output Image Synthetic Camera Model Real Scene Real Cameras But, vision technology falls short Output Image Synthetic Camera Model Real Scene Real Cameras](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-5.jpg)
But, vision technology falls short Output Image Synthetic Camera Model Real Scene Real Cameras
![… and so does graphics. Output Image Synthetic Camera Model Real Scene Real Cameras … and so does graphics. Output Image Synthetic Camera Model Real Scene Real Cameras](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-6.jpg)
… and so does graphics. Output Image Synthetic Camera Model Real Scene Real Cameras
![Image Based Rendering Output Image Synthetic Real Scene Camera Images+Model Real Cameras -or. Expensive Image Based Rendering Output Image Synthetic Real Scene Camera Images+Model Real Cameras -or. Expensive](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-7.jpg)
Image Based Rendering Output Image Synthetic Real Scene Camera Images+Model Real Cameras -or. Expensive Image Synthesis
![Ray q Constant radiance • time is fixed q 5 D • 3 D Ray q Constant radiance • time is fixed q 5 D • 3 D](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-8.jpg)
Ray q Constant radiance • time is fixed q 5 D • 3 D position • 2 D direction
![All Rays q Plenoptic Function • all possible images • too much stuff! All Rays q Plenoptic Function • all possible images • too much stuff!](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-9.jpg)
All Rays q Plenoptic Function • all possible images • too much stuff!
![Line q Infinite line q 4 D • 2 D direction • 2 D Line q Infinite line q 4 D • 2 D direction • 2 D](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-10.jpg)
Line q Infinite line q 4 D • 2 D direction • 2 D position
![Ray q Discretize q Distance between 2 rays • Which is closer together? Ray q Discretize q Distance between 2 rays • Which is closer together?](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-11.jpg)
Ray q Discretize q Distance between 2 rays • Which is closer together?
![Image q What is an image? q All rays through a point • Panorama? Image q What is an image? q All rays through a point • Panorama?](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-12.jpg)
Image q What is an image? q All rays through a point • Panorama?
![Image q 2 D • position of rays has been fixed • direction remains Image q 2 D • position of rays has been fixed • direction remains](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-13.jpg)
Image q 2 D • position of rays has been fixed • direction remains
![Image q Image plane q 2 D • position Image q Image plane q 2 D • position](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-14.jpg)
Image q Image plane q 2 D • position
![Image q Image plane q 2 D • position Image q Image plane q 2 D • position](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-15.jpg)
Image q Image plane q 2 D • position
![Object q Light leaving towards “eye” q 2 D • just dual of image Object q Light leaving towards “eye” q 2 D • just dual of image](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-16.jpg)
Object q Light leaving towards “eye” q 2 D • just dual of image
![Object q All light leaving object Object q All light leaving object](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-17.jpg)
Object q All light leaving object
![Object q 4 D • 2 D position • 2 D direction Object q 4 D • 2 D position • 2 D direction](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-18.jpg)
Object q 4 D • 2 D position • 2 D direction
![Object q All images Object q All images](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-19.jpg)
Object q All images
![Lumigraph q How to • organize • capture • render Lumigraph q How to • organize • capture • render](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-20.jpg)
Lumigraph q How to • organize • capture • render
![Lumigraph - Organization 2 D position q 2 D direction q q s Lumigraph - Organization 2 D position q 2 D direction q q s](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-21.jpg)
Lumigraph - Organization 2 D position q 2 D direction q q s
![Lumigraph - Organization 2 D position q s q 2 plane parameterization u Lumigraph - Organization 2 D position q s q 2 plane parameterization u](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-22.jpg)
Lumigraph - Organization 2 D position q s q 2 plane parameterization u
![Lumigraph - Organization 2 D position q s, t t u, v s, t Lumigraph - Organization 2 D position q s, t t u, v s, t](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-23.jpg)
Lumigraph - Organization 2 D position q s, t t u, v s, t v u, v q 2 plane parameterization s u
![Lumigraph - Organization Hold s, t constant q Let u, v vary q An Lumigraph - Organization Hold s, t constant q Let u, v vary q An](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-24.jpg)
Lumigraph - Organization Hold s, t constant q Let u, v vary q An image q s, t u, v
![Lumigraph - Organization q Discretization • higher res near object • if diffuse • Lumigraph - Organization q Discretization • higher res near object • if diffuse •](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-25.jpg)
Lumigraph - Organization q Discretization • higher res near object • if diffuse • captures texture • lower res away • captures directions s, t u, v
![Lumigraph - Capture q Idea 1 • Move camera carefully over s, t plane Lumigraph - Capture q Idea 1 • Move camera carefully over s, t plane](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-26.jpg)
Lumigraph - Capture q Idea 1 • Move camera carefully over s, t plane • Gantry • see Lightfield paper s, t u, v
![Lumigraph - Capture q Idea 2 • Move camera anywhere • Rebinning • see Lumigraph - Capture q Idea 2 • Move camera anywhere • Rebinning • see](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-27.jpg)
Lumigraph - Capture q Idea 2 • Move camera anywhere • Rebinning • see Lumigraph paper s, t u, v
![Lumigraph - Rendering q For each output pixel • determine s, t, u, v Lumigraph - Rendering q For each output pixel • determine s, t, u, v](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-28.jpg)
Lumigraph - Rendering q For each output pixel • determine s, t, u, v • either • find closest discrete RGB • interpolate near values s, t u, v
![Lumigraph - Rendering q For each output pixel • determine s, t, u, v Lumigraph - Rendering q For each output pixel • determine s, t, u, v](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-29.jpg)
Lumigraph - Rendering q For each output pixel • determine s, t, u, v • either • use closest discrete RGB • interpolate near values s u
![Lumigraph - Rendering q Nearest • closest s • closest u • draw it Lumigraph - Rendering q Nearest • closest s • closest u • draw it](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-30.jpg)
Lumigraph - Rendering q Nearest • closest s • closest u • draw it q Blend 16 nearest • quadrilinear interpolation s u
![High-Quality Video View Interpolation Using a Layered Representation Larry Zitnick Sing Bing Kang Matt High-Quality Video View Interpolation Using a Layered Representation Larry Zitnick Sing Bing Kang Matt](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-31.jpg)
High-Quality Video View Interpolation Using a Layered Representation Larry Zitnick Sing Bing Kang Matt Uyttendaele Simon Winder Rick Szeliski Interactive Visual Media Group Microsoft Research
![Current practice free viewpoint video Many cameras vs. Motion Jitter Current practice free viewpoint video Many cameras vs. Motion Jitter](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-32.jpg)
Current practice free viewpoint video Many cameras vs. Motion Jitter
![Current practice free viewpoint video Many cameras vs. Motion Jitter Current practice free viewpoint video Many cameras vs. Motion Jitter](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-33.jpg)
Current practice free viewpoint video Many cameras vs. Motion Jitter
![Video view interpolation Fewer cameras and Smooth Motion Automatic Real-time rendering Video view interpolation Fewer cameras and Smooth Motion Automatic Real-time rendering](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-34.jpg)
Video view interpolation Fewer cameras and Smooth Motion Automatic Real-time rendering
![Prior work: IBR (static) Plenoptic Modeling Mc. Millan & Bishop, SIGGRAPH ‘ 95 Light Prior work: IBR (static) Plenoptic Modeling Mc. Millan & Bishop, SIGGRAPH ‘ 95 Light](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-35.jpg)
Prior work: IBR (static) Plenoptic Modeling Mc. Millan & Bishop, SIGGRAPH ‘ 95 Light Field Rendering Levoy & Hanrahan, SIGGRAPH ‘ 96 The Lumigraph Gortler et al. , SIGGRAPH ‘ 96 Concentric Mosaics Shum & He, SIGGRAPH ‘ 99
![Prior work: IBR (dynamic) Stanford Multi-Camera Array Project Virtualized Reality. TM Kanade et al. Prior work: IBR (dynamic) Stanford Multi-Camera Array Project Virtualized Reality. TM Kanade et al.](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-36.jpg)
Prior work: IBR (dynamic) Stanford Multi-Camera Array Project Virtualized Reality. TM Kanade et al. , IEEE Multimedia ‘ 97 Image-Based Visual Hulls Matusik et al. , SIGGRAPH ‘ 00 Dynamic Light Fields Goldlucke et al. , VMV ‘ 02 Free-viewpoint Video of Humans Carranza et al. , SIGGRAPH ‘ 03 3 D TV Matusik & Pfister, SIGGRAPH ‘ 04
![System overview Video Capture OFFLINE Stereo Representation Compression File ONLINE Selective Decompression Render System overview Video Capture OFFLINE Stereo Representation Compression File ONLINE Selective Decompression Render](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-37.jpg)
System overview Video Capture OFFLINE Stereo Representation Compression File ONLINE Selective Decompression Render
![cameras hard disks concentrators controlling laptop cameras hard disks concentrators controlling laptop](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-38.jpg)
cameras hard disks concentrators controlling laptop
![Calibration Zhengyou Zhang, 2000 Calibration Zhengyou Zhang, 2000](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-39.jpg)
Calibration Zhengyou Zhang, 2000
![Input videos Input videos](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-40.jpg)
Input videos
![Key to view interpolation: Geometry Stereo Geometry Image 1 Image 2 Camera 1 Camera Key to view interpolation: Geometry Stereo Geometry Image 1 Image 2 Camera 1 Camera](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-41.jpg)
Key to view interpolation: Geometry Stereo Geometry Image 1 Image 2 Camera 1 Camera 2 Virtual Camera
![Image correspondence Image 1 Image 2 Leg Correct Wall Good Incorrect Bad Match Score Image correspondence Image 1 Image 2 Leg Correct Wall Good Incorrect Bad Match Score](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-42.jpg)
Image correspondence Image 1 Image 2 Leg Correct Wall Good Incorrect Bad Match Score
![Local matching Image 1 Image 2 Low texture Local matching Image 1 Image 2 Low texture](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-43.jpg)
Local matching Image 1 Image 2 Low texture
![Global regularization A Create MRF (Markov Random Field): Image 1 Image 2 E B Global regularization A Create MRF (Markov Random Field): Image 1 Image 2 E B](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-44.jpg)
Global regularization A Create MRF (Markov Random Field): Image 1 Image 2 E B P A F C Q A S D color. A ≈ color. B → z. A ≈ z. B Each segment is a node R T U z. A ≈ z. Pof, zstates Number Q, z S = number of depth levels
![Iteratively solve MRF Iteratively solve MRF](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-45.jpg)
Iteratively solve MRF
![Depth through time Depth through time](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-46.jpg)
Depth through time
![Matting Background Surfacematting Interpolated view without Foreground Surface Background Strip Width Foreground Bayesian Matting Matting Background Surfacematting Interpolated view without Foreground Surface Background Strip Width Foreground Bayesian Matting](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-47.jpg)
Matting Background Surfacematting Interpolated view without Foreground Surface Background Strip Width Foreground Bayesian Matting Chuang et al. 2001 Camera Background Alpha Foreground
![Rendering with matting No Matting Rendering with matting No Matting](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-48.jpg)
Rendering with matting No Matting
![Representation Main Background Boundary Strip Width Foreground Main Layer: Boundary Layer: Color Alpha Depth Representation Main Background Boundary Strip Width Foreground Main Layer: Boundary Layer: Color Alpha Depth](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-49.jpg)
Representation Main Background Boundary Strip Width Foreground Main Layer: Boundary Layer: Color Alpha Depth
![“Massive Arabesque” videoclip “Massive Arabesque” videoclip](http://slidetodoc.com/presentation_image_h2/d5fe7f0339361cfa77c262a643a337a6/image-50.jpg)
“Massive Arabesque” videoclip
- Slides: 50