Modelowanie i identyfikacja 20142015 Wprowadzenie Modelowanie matematyczne Definicja

  • Slides: 43
Download presentation
Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modelowanie matematyczne Definicja modelu matematycznego: Modelem matematycznym nazywamy reprezentację

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modelowanie matematyczne Definicja modelu matematycznego: Modelem matematycznym nazywamy reprezentację istniejącego lub hipotetycznego fragmentu rzeczywistości, tworzoną w określonym celu, z wykorzystaniem skończonego zbioru symboli i operatorów matematycznych, z którymi związane są ścisłe zasady posługiwania się nimi, pozbawioną szczegółów i cech nieistotnych dla osiągnięcia postawionego celu. Zawarte w modelu symbole i operatory matematyczne mają interpretację odnoszącą je do konkretnych elementów modelowanego fragmentu rzeczywistości Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 1

Modelowanie i identyfikacja 2014/2015 Wprowadzenie System Zwięzła definicja systemu: Element/obiekt lub zbiór elementów/obiektów których

Modelowanie i identyfikacja 2014/2015 Wprowadzenie System Zwięzła definicja systemu: Element/obiekt lub zbiór elementów/obiektów których właściwości chcielibyśmy badać Idee wokół których budowane jest pojecie systemu: wyodrębnienie systemu z otoczenia funkcja spełniana przez system budowa systemu z zależnych elementów …… Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 2

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Wybrane krótkie definicje systemu: SYSTEM (definicja przyrodnicza) jest to

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Wybrane krótkie definicje systemu: SYSTEM (definicja przyrodnicza) jest to zbiór współdziałających ze sobą elementów, połączonych w całość wspólną funkcją niesprowadzalną do funkcji poszczególnych elementów SYSTEM (definicja cybernetyczna) jest to składająca się z elementów funkcjonalna całość wyodrębniona z otoczenia, na którą otoczenie oddziałuje za pośrednictwem wielkości wejściowych (bodźców), i która zwrotnie oddziałuje na otoczenie za pośrednictwem wielkości wyjściowych (reakcji) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 3

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Rozbudowana definicja systemu: (1) SYSTEM jest pewnym zorganizowanym zespołem

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Rozbudowana definicja systemu: (1) SYSTEM jest pewnym zorganizowanym zespołem elementów. „Zorganizowanym” znaczy, że istnieją określone powiązania pomiędzy elementami (2) SYSTEM robi coś, co pozwala go wyróżnić, to znaczy okazuje rodzaj zachowania unikatowy dla systemu (3) Każdy element wnosi swój wkład do zachowania SYSTEMU i ulega wpływom bycia w SYSTEMIE. Żaden element nie ma niezależnego wpływu na zachowanie systemu. Zachowanie systemu zmienia się, jeżeli jakikolwiek element zostanie usunięty lub opuści system (4) Grupa elementów w obrębie systemu może posiadać, sama w sobie, właściwości (1), (2) i (3), to znaczy mogą one tworzyć PODSYSTEM (5) SYSTEM posiada pewne zewnętrze – otoczenie, które dostarcza wejść do systemu i przyjmuje wyjścia z systemu. (6) SYSTEM został postrzeżony przez kogoś jako coś wartego specjalnego zainteresowania, poznania, . . . Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 4

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Istotny krok definiowania systemu: wyodrębnienie systemu z otoczenia Wyodrębnienie

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Istotny krok definiowania systemu: wyodrębnienie systemu z otoczenia Wyodrębnienie systemu z otoczenia: określenie wielkości wejściowych i wyjściowych wiążących system z otoczeniem Spojrzenie na system typu: wejście – wyjście Modele: wejście - wyjście Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 5

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: Oferty kupna Cena akcji IBM Rynek papierów wartościowych

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: Oferty kupna Cena akcji IBM Rynek papierów wartościowych Cena akcji Intel’a Oferty sprzedaży Wysiłek, starania prowadzących Stopnie studentów Mi. I 1: Modelowanie i identyfikacja Wysiłek, starania studentów Kazimierz Duzinkiewicz, dr hab. inż. Oceny prowadzących Katedra Inżynierii Systemów Sterowania 6

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Systemy statyczne - wartości wielkości wejściowych w chwilach innych

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Systemy statyczne - wartości wielkości wejściowych w chwilach innych niż bieżąca chwila t nie mają wpływu na wartości wielkości wyjściowych w tej chwili Jak rozpoznać system statyczny? System przejawia właściwości statyczne, jeżeli zawiera jedynie elementy posiadające zdolność rozpraszania i/lub przekształcania energii Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 7

Modelowanie i identyfikacja 2014/2015 Przykłady: U f Uwe 1 R 1 Uwe 1 i

Modelowanie i identyfikacja 2014/2015 Przykłady: U f Uwe 1 R 1 Uwe 1 i 1 Uwe 2 R 2 Wprowadzenie if ig Rf eg - K + i 2 Uwy iwe(t) Uwe 2 Inne przykłady: iwy (t) uwe(t) Rp - dźwignia dwuramienna Rw uwy (t) - prasa hydrauliczna - przekładnia zębata Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 8

Modelowanie i identyfikacja 2014/2015 Wprowadzenie System dynamiczny Fakt: prawie każdy system rzeczywisty jest systemem

Modelowanie i identyfikacja 2014/2015 Wprowadzenie System dynamiczny Fakt: prawie każdy system rzeczywisty jest systemem dynamicznym Jak przejawia się dynamika systemu? Na wartości wielkości wyjściowych systemu w chwili t, mają wpływ nie tylko wartości wielkości wejściowych w tej właśnie chwili, ale również ich wartości w chwilach wcześniejszych od t Jak rozpoznać systemy dynamiczne? System przejawia właściwości dynamiczne, jeżeli zawiera elementy posiadające zdolność magazynowania i oddawania energii Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 9

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: f M k/2 Mn Mo Kazimierz Duzinkiewicz, dr

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: f M k/2 Mn Mo Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 10

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: Powierzchnia A Przewodzenie, K Konwekcja, h T Natężenie

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: Powierzchnia A Przewodzenie, K Konwekcja, h T Natężenie dopływu wody Qwe Ti L Ts Powierzchni a lustra wody A h Objętość wody w zbiorniku V Zawór Natężenie wypływu wody Qwy Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 11

Modelowanie i identyfikacja 2014/2015 uf Przykłady: uwe R Wprowadzenie if iwe ig eg uwe(t)

Modelowanie i identyfikacja 2014/2015 uf Przykłady: uwe R Wprowadzenie if iwe ig eg uwe(t) Kazimierz Duzinkiewicz, dr hab. inż. Cf - -K Rwe, Rwy + uwy u. R(t) u. L(t) R L i. RL(t) iobc(t) i. C(t) u. C(t) Katedra Inżynierii Systemów Sterowania C uwy(t) 12

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: u vt . y. L Kazimierz Duzinkiewicz, dr

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykłady: u vt . y. L Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 13

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Stan systemu dynamicznego – przypadek bez opóźnień Przez stan

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Stan systemu dynamicznego – przypadek bez opóźnień Przez stan systemu rozumie się najmniejszą liczbę wielkości, znajomość wartości których w danej chwili t 0, przy znajomości wartości wielkości wejściowych, począwszy od tej chwili t 0, pozwala określić jednoznacznie stan i wielkości wyjściowe systemu w przyszłości. u(t ); t x t (t 0) 0 ; ) t x( y( t) t t ; t 0 Spojrzenie na system typu: wejście – stan – wyjście Modele: przestrzeni stanów Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 14

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modele matematyczne i sterowanie Interesuje nas budowanie modeli, które

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modele matematyczne i sterowanie Interesuje nas budowanie modeli, które mogą być zastosowane przy rozwiązywaniu problemów sterowania Sterowanie to proces celowego oddziaływania człowieka lub skonstruowanych przez niego urządzeń na środowisko lub inne skonstruowane przez niego urządzenie Na pojęcie sterowania składają się pojęcia szczegółowe: proces sterowany, ograniczenia sterowania, cele sterowania, wskaźnik jakości sterowania Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 15

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Proces sterowany - to część otaczającego nas środowiska lub

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Proces sterowany - to część otaczającego nas środowiska lub urządzenie, na które oddziałujemy. Użycie słowa proces podkreśla, że nie traktujemy oddziaływania i jego skutków chwilowo, statycznie, a interesują nas one jako przebieg dynamiczny w pewnym przedziale czasu Ograniczenia sterowania - to te uwarunkowania związane z procesem sterowanym, które sprawiają, że nie możemy oddziaływać na ten proces w sposób dowolny Cel sterowania - to postulowany, pożądany rezultat naszego oddziaływania. Jeżeli cel sterowania jest osiągalny, to zazwyczaj można go osiągnąć w różnoraki sposób. Staramy się ocenić, który ze sposobów jest lepszy Wskaźnik jakości sterowania – jest miarą jakości przebiegu procesu sterowanego, która umożliwia wybranie sposobu osiągnięcia celu sterowania Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 16

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Definicja modelu matematycznego problemu sterowania: Modelem matematycznym problemu sterowania,

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Definicja modelu matematycznego problemu sterowania: Modelem matematycznym problemu sterowania, będziemy nazywać reprezentację wiedzy o: - procesie sterowanym, - celu sterowania, - ograniczeniach sterowania i - wskaźnikach jakości sterowania wyrażoną językiem matematyki (z użyciem symboli i operatorów matematycznych), pomocną przy rozwiązywaniu określonego problemu sterowania lub monitorowania Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 17

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modelowanie a symulacja Symulacja sztuczne odtwarzanie (np. w warunkach

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modelowanie a symulacja Symulacja sztuczne odtwarzanie (np. w warunkach laboratoryjnych; często za pomocą komputerów) właściwości danego obiektu, zjawiska lub przestrzeni występujących w naturze, lecz trudnych do obserwowania, zbadania, powtórzenia itp. Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 18

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modelowanie matematyczne – to tworzenie w języku matematyki reprezentacji

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modelowanie matematyczne – to tworzenie w języku matematyki reprezentacji systemów hipotetycznych lub istniejących w rzeczywistości Symulacja - to eksperymentowanie na modelu badanego systemu, przy wykorzystaniu oddziaływań i obserwacji mających swoje odpowiedniki w badanym systemie, przy czym eksperymentowanie to zapewnia eksperymentatorowi, w pewnym stopniu, złudzenie kontaktu z systemem rzeczywistym Symulacyjny model matematyczny (krótko – model symulacyjny) to taki model matematyczny, który został zbudowany dla potrzeb symulacji Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 19

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Model symulacyjny: daje możliwość oddziaływania na model systemu wielkościami

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Model symulacyjny: daje możliwość oddziaływania na model systemu wielkościami mającymi swoje odpowiedniki w badanym systemie, których efekt oddziaływania chcielibyśmy obserwować daje możliwość obserwacji na modelu systemu wielkości, które mają swoje odpowiedniki w badanym systemie i które chcielibyśmy obserwować Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 20

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Etapy modelowania matematycznego W procesie modelowania matematycznego można wyróżnić

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Etapy modelowania matematycznego W procesie modelowania matematycznego można wyróżnić kilka podstawowych etapów: Sformułowanie celów i założeń modelowania Budowa bazy wiedzy i bazy danych o modelowanym systemie Wybór kategorii modelu Określenie struktury modelu; budowa modelu Identyfikacja modelu Algorytmizacja obliczeń z modelem Weryfikacja modelu Dodatek A: Krótka charakterystyka etapów modelowania Pomiędzy poszczególnymi etapami modelowania występują interakcje – proces modelowania nie jest procesem o szeregowej strukturze Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 21

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Sprzężenia pomiędzy etapami budowy modelu matematycznego Problem rozwiązywany z

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Sprzężenia pomiędzy etapami budowy modelu matematycznego Problem rozwiązywany z pomocą modelowania matematycznego Cele i założenia modelowania Baza danych Baza wiedzy Teorie Prawa Wiedza empiryczna Hipotezy Kategoria modelu Struktura modelu Identyfikacja modelu Algorytmizacja modelu Dane eksperymentalne Weryfikacja modelu Model zweryfikowany Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania Zastosowanie 22

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Miejsce komputera w procesie modelowania matematycznego Eksperymentator Określenie celu

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Miejsce komputera w procesie modelowania matematycznego Eksperymentator Określenie celu modelowania, wybór kategorii modelu, określenie struktury modelu, wybór algorytmów Model matematyczny System Źródło danych Dane i wiedza o systemie Dane do identyfikacji, weryfikacji, obliczeń z modelem Zmiana/modyfikacja modelu Algorytmy identyfikacji, weryfikacji, obliczeń z modelem Zmiana/modyfikacja algorytmów Komputer Narzędzie przetwarzania danych w oparciu o określone algorytmy Kazimierz Duzinkiewicz, dr hab. inż. Wyniki Przesłanki do akceptacji lub zmiany Katedra Inżynierii Systemów Sterowania 23

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Dziękuję – koniec materiału prezentowanego podczas wykładu Kazimierz Duzinkiewicz,

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Dziękuję – koniec materiału prezentowanego podczas wykładu Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 24

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Krótka charakterystyka etapów modelowania Dodatek A Kazimierz Duzinkiewicz, dr

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Krótka charakterystyka etapów modelowania Dodatek A Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 25

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Określenie celów modelowania Dlaczego jasne określenie celu modelowania jest

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Określenie celów modelowania Dlaczego jasne określenie celu modelowania jest ważne? 1. ma to bezpośredni wpływ na przebieg i treści procesu modelowania – różne cele implikują różne problemy jakie trzeba rozwiązać przy modelowaniu; 2. modelowanie jest najczęściej działalnością interdyscyplinarną – określenie celu musi być jasne dla wszystkich biorących udział w modelowaniu; 3. po zbudowaniu modelu musimy ocenić, na ile zadowalająco postawiony cel został osiągnięty Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 26

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Wybrane zastosowania modeli: Model (matematyczny) to matematyczny opis rzeczywistego

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Wybrane zastosowania modeli: Model (matematyczny) to matematyczny opis rzeczywistego lub hipotetycznego systemu (procesu) tworzony z myślą o konkretnym zastosowaniu Wybrane zastosowania interesujące dla automatyka: (a) Estymacja, w oparciu o pomiary pośrednie, wielkości, których pomiary są niedostępne; (b) Predykcja zachowań systemu sterowanego (krótkookresowych, długookresowych) – sterowanie predykcyjne, sterowanie adaptacyjne; (c) Sterowanie procesami (regulacja w otoczeniu pewnego nominalnego punktu pracy, śledzenie trajektorii z znacznymi procesami przejściowymi, sterowanie optymalne. . . ); (d) Przetwarzanie sygnałów (likwidacja szumów, filtrowanie (np. zastosowanie filtru Kalmana wymaga modelu procesu generującego dane), interpolacja. . . ); Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 27

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Kategorie modeli Powszechnie stosowana klasyfikacja modeli systemów: Alternatywy dla

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Kategorie modeli Powszechnie stosowana klasyfikacja modeli systemów: Alternatywy dla klasyfikowania modeli systemów NIEPARAMETRYCZNE lub PARAMETRYCZNE Modele nieparametryczne systemu to modele dane w postaci wykresu, funkcji itp. , które niekonieczne opisane być mogą za pomocą skończonej liczby parametrów (danych) Modele parametryczne systemu to modele w których dla pełnego opisu elementu potrzebna jest znajomość na pewno skończonej liczby parametrów (współczynników) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 28

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykładami modeli nieparametrycznych są: - charakterystyki czasowe elementu –

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Przykładami modeli nieparametrycznych są: - charakterystyki czasowe elementu – modelem jest sygnał wyjściowy wywołany odpowiednim sygnałem wejściowym; - charakterystyka częstotliwościowe elementu liniowego – modelem jest zależność amplitudy i fazy sygnału wyjściowego od częstotliwości sinusoidalnego sygnału wejściowego; Przykładami modeli parametrycznych są: - równania różniczkowe wejście – wyjście elementu; - równania stanu i równania wyjścia elementu; - równania algebraiczne Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 29

Modelowanie i identyfikacja 2014/2015 Wprowadzenie FENOMENOLOGICZNE (white – box) lub BEHAWIORALNE (black-box) Modele fenomenologiczne

Modelowanie i identyfikacja 2014/2015 Wprowadzenie FENOMENOLOGICZNE (white – box) lub BEHAWIORALNE (black-box) Modele fenomenologiczne (lub oparte o wiedzę): Modele budowane w oparciu o zasady zachowania lub równania równowagi (dla masy, momentów, energii, . . . ) Modele bliskie tym, którzy są po wykładach z fizyki, chemii, elektrotechniki, mechaniki, hydrauliki, hydrologii bądź z innych dziedzin Cecha: Struktura modelu pozostaje w zasadniczym związku ze strukturą procesów a parametry modelu posiadają fizykalną interpretację Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 30

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modele behawioralne – modele budowane w oparciu o zebrane

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modele behawioralne – modele budowane w oparciu o zebrane dane pomiarowe, modele które jedynie aproksymują obserwowane zachowanie się systemu, nie wymagając w tym celu żadnej wiedzy a priori o procesach generujących te dane Cecha: Struktura modelu nie musi pozostawać w żadnym zasadniczym związku ze strukturą procesów a parametry nie posiadają żadnej fizykalnej interpretacji Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 31

Modelowanie i identyfikacja 2014/2015 Wprowadzenie STATYCZNE lub DYNAMICZNE Systemy statyczne składają się z elementów

Modelowanie i identyfikacja 2014/2015 Wprowadzenie STATYCZNE lub DYNAMICZNE Systemy statyczne składają się z elementów zdolnych co najwyżej przekazywać energię, masę, informację bez strat lub ze stratami – dają się opisywać m. in. za pomocą układów równań algebraicznych – ciągłych lub dyskretnych Systemy dynamiczne zawierają elementy zdolne gromadzić i oddawać energię, masę, informację – mogą być opisywane m. in. za pomocą układów równań różniczkowych lub różnicowych Jeżeli interesują nas jedynie stany równowagi systemu dynamicznego, w których dany system może się znajdować, to możemy ograniczyć się dla takiego systemu dynamicznego do modelu statycznego Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 32

Modelowanie i identyfikacja 2014/2015 Wprowadzenie LINIOWE lub NIELINIOWE Będziemy rozróżniali dwa rodzaje liniowości: (i)

Modelowanie i identyfikacja 2014/2015 Wprowadzenie LINIOWE lub NIELINIOWE Będziemy rozróżniali dwa rodzaje liniowości: (i) liniowość względem wejść (LI - linear in its inputs), (ii) liniowość względem parametrów (LP – linear in its parameters) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 33

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Z CZASEM CIĄGŁYM lub Z CZASEM DYSKRETNYM Modele z

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Z CZASEM CIĄGŁYM lub Z CZASEM DYSKRETNYM Modele z czasem ciągłym Przyjmuje się na ogół, że badane procesy ewoluują w czasie ciągłym – stąd naturalna tendencja do stosowania modeli opisywanych równaniami różniczkowymi, w szczególności różniczkowymi modelami w przestrzeni stanu Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 34

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modele z czasem dyskretnym Wprowadzenie techniki komputerowej (cyfrowej) zainicjowało

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Modele z czasem dyskretnym Wprowadzenie techniki komputerowej (cyfrowej) zainicjowało stosowanie modeli z czasem dyskretnym Model w przestrzeni stanu z czasem dyskretnym ma postać gdzie t jest całkowitoliczbowym indeksem czasu, który odpowiada czasowi rzeczywistemu t·T, jeżeli rozważany system z czasem ciągłym jest próbkowany z okresem T Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 35

Modelowanie i identyfikacja 2014/2015 Wprowadzenie DETERMINISTYCZNE lub NIEDETERMINISTYCZNE W modelach systemów deterministycznych wielkościom i

Modelowanie i identyfikacja 2014/2015 Wprowadzenie DETERMINISTYCZNE lub NIEDETERMINISTYCZNE W modelach systemów deterministycznych wielkościom i współczynnikom przypisywane są określone wartości, w modelach systemów niedeterministycznych co najmniej jedna wielkość lub współczynnik ma niepewne wartości Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 36

Modelowanie i identyfikacja 2014/2015 Wprowadzenie ZMIENNE W CZASIE lub NIEZMIENNE W CZASIE (NIESTACJONARNE LUB

Modelowanie i identyfikacja 2014/2015 Wprowadzenie ZMIENNE W CZASIE lub NIEZMIENNE W CZASIE (NIESTACJONARNE LUB STACJONARNE) W modelach systemów niestacjonarnych co najmniej niektóre współczynniki (parametry modelu) są funkcjami czasu, w modelach systemów stacjonarnych są stałe Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 37

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Budowa modelu matematycznego Praktyczne wymagania jakie musimy starać się

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Budowa modelu matematycznego Praktyczne wymagania jakie musimy starać się spełnić przy budowie modelu: zgodność z modelowanym systemem w zakresie interesujących nas właściwości, zależności łatwość użytkowania modelu zgodnie z przeznaczeniem Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 38

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Identyfikacja modelu matematycznego Identyfikację modelu przeprowadzamy, gdy: wiedza teoretyczna

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Identyfikacja modelu matematycznego Identyfikację modelu przeprowadzamy, gdy: wiedza teoretyczna o systemie nie wystarcza do nadania modelowi postaci umożliwiającej wykonanie w oparciu o ten model obliczeń; nie wystarcza do określenia niektórych lub wszystkich współczynników tego modelu Identyfikacja modelu (parametrów modelu) to: wyznaczenie ocen statystycznych (lub innych) – estymatorów wartości nieznanych parametrów drogą odpowiedniego przetworzenia danych eksperymentalnych (pomiarowych, doświadczalnych) Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 39

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego Weryfikacja modelu to porównanie wyników modelowania

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego Weryfikacja modelu to porównanie wyników modelowania z: zachowaniem się systemu rzeczywistego, lub wynikami z modelu wzorcowego z punktu widzenia ich zgodności z wiedzą teoretyczną wynikami badań doświadczalnych Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania i/lub z 40

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego – c. d. zgodność pragmatyczna –

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego – c. d. zgodność pragmatyczna – dotyczy bezpośredniej zgodności wyników z modelu systemu z danymi z systemu rzeczywistego; stwierdzenie tej zgodności wymaga przede wszystkim porównania wielkości wyjściowych z modelu i z systemu rzeczywistego Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 41

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego – c. d. Schemat weryfikowania zgodności

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego – c. d. Schemat weryfikowania zgodności pragmatycznej Zakłócenia Model zakłóceń Wielkości wejściowe SYSTEM Uwaga: Weryfikacja zgodności pragmatycznej modeli systemów nie istniejących, np. znajdujących się w stadium projektowania nie jest w zasadzie możliwa Wielkości wyjściowe Kryteria zgodności MODEL Wynik weryfikacji Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 42

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego – c. d. Procedura weryfikacji pragmatycznej

Modelowanie i identyfikacja 2014/2015 Wprowadzenie Weryfikacja modelu matematycznego – c. d. Procedura weryfikacji pragmatycznej poza testami zgodności (w sensie odległości wyjść modelu i systemu) powinna przewidywać analizę wrażliwości Analiza wrażliwości polega na badaniu zmian wielkości (zmiennych) modelu przy zmianach samego modelu (głównie jego parametrów). Od dobrego modelu wymaga się, aby małe zmiany parametrów modelu wywoływały jedynie małe zmiany jego wielkości (zmiennych). Kazimierz Duzinkiewicz, dr hab. inż. Katedra Inżynierii Systemów Sterowania 43