Energy Harvesting Sensor Networks for MaintenanceFree Health Monitoring
- Slides: 66
Energy Harvesting Sensor Networks for Maintenance-Free Health Monitoring of Structures and Condition Monitoring of Machinery Micro. Strain Inc Mike Robinson www. microstrain. com; mirobinson@microstrain. com © Copyright 2011 Micro. Strain Inc.
Energy Checkbook Just like a bank account – what comes out must be less than what goes in and need to maintain a minimum balance • Power consumption of the sensor • Available ambient energy • Storage mechanism © Copyright 2011 Micro. Strain Inc. 2
Elements of Energy Harvesting Ambient Energy • Vibration • Strain • Solar • Thermal Energy Storage • Super capacitor • Thin film battery Power Consumption • Sensor Type • Sample Rate • Duty cycle • Protocol (e. g. bufffered) © Copyright 2011 Micro. Strain Inc.
Micro. Strain Extended Range, Synchronized Wireless Sensing System Overview (m. XRS) System Components: • Extended Range Synchronized Sensor Nodes • V-LINK-m. XRS™ • SG-Link-m. XRS™ • DVRT-Link-m. XRS™ • G-LINK-m. XRS™ • TC-LINK-m. XRS-1 CH™ • TC-LINK-m. XRS-6 CH™ • SG-Link-OEM-m. S (Sync Only) • WSDA-Base • Node Commander Software © Copyright 2011 Micro. Strain Inc.
What is a Wireless Sensor Node Sensor Inputs Lithium thionyl chloride battery Radio Frequency (RF) transceiver Sensor signal conditioning 8 bit low power, microcontroller Flash EEPROM for sensor logging 12, 16 or 24 bit A/D converter multiplexer, PG instrumentation amplifier © Copyright 2011 Micro. Strain Inc.
Micro. Strain’s Wireless Sensor Node (Datalogging Transceivers) • IEEE 802. 15. 4 compliant • 2 MB flash memory stores up to 1, 000 data points • 16 bit node ID • Datalogging up to 2 k. Hz • Real-time streaming up to 512 Hz • Quasi real-time streaming of bursts up to 2 k. Hz • Programmable range – 70 m to 2 km • 16 operating frequencies within the 2. 4 GHz band • Rechargeable or primary batteries or an energy harvester © Copyright 2011 Micro. Strain Inc.
Features & Benefits of m. XRS™ Wireless System • • • Nano power ultra-stable real-time clock on nodes provides timing reference of ± 3 ppm Extended Range Wireless Communication programmable: 0 d. Bm (1 m. W) – 70 m 16 d. Bm (40 m. W) – 2 km 10 d. Bm (10 m. W) – 1 km Node-to-node synchronization of ± 32 μseconds Multiple nodes on single RF channel Scalable – up to 16 channels Nodes operating continuously and in burst mode on same RF channel © Copyright 2011 Micro. Strain Inc.
Harvesting Ambient Energy © Copyright 2011 Micro. Strain Inc.
Energy Sources • • • RF Fields Strain Vibration Photovoltaic Thermal Kinetic © Copyright 2011 Micro. Strain Inc.
Power from electromagnetic fields © Copyright 2011 Micro. Strain Inc.
Smart Medical Devices • Embedded coil and microelectronics module are hermetically sealed within a titanium package. • Implant monitors static & dynamic forces and moments across knee in vivo. US patents 6529127, 7256695 © Copyright 2011 Micro. Strain Inc.
Radiographs courtesy Scripps Clinic, La Jolla, CA D’Lima et al, J. Biomechanics © Copyright 2011 Micro. Strain Inc.
Practical application: • Torque and temperature on rotating components • production line monitoring © Copyright 2011 Micro. Strain Inc.
Power from strain © Copyright 2011 Micro. Strain Inc.
Pitch Link w/ Energy Harvesting, Sensing, Data Storage, & Wireless Communications RF antenna Circuit board module, microprocessor, and electrochemical battery Piezoresistive strain gauge Electrical insulation, EMI shielding, & protective covering (shown transparent for illustration purposes) Piezoelectric energy harvesting elements (patents issued) Sikorsky H-60 Blackhawk © Copyright 2011 Micro. Strain Inc.
Micro. Strain’s Wireless Pitch-Link for Bell M 412 (patent pending) Electronics Module: 8. 2 gr PZT total weight: 4. 3 gr/patch x 12 patches = 52 gr Cold shrink weight: 7 gr/inch x 8 inches = 56 gr (Bell chose clamps w/ counterbalance) © Copyright 2011 Micro. Strain Inc.
How much energy can be harvested from strain? © Copyright 2011 Micro. Strain Inc.
It depends on the strain amplitude, frequency, and the PZT area for Strain Powered Bell ‘ 407 Mast Node [7] : • Macro fiber composite PZT patches (qty 8, 2 x 5 cm) bonded to mast. During straight level flight on Bell 407 mast (+/500 µЄ, 5 Hz) generated ~2. 5 m. W • Power/Area/Strain = 62. 5 n. W/cm^2/µЄ @ 5 Hz © Copyright 2011 Micro. Strain Inc.
M 412 Pitch Link, 5 Hz sine input PZT power output vs. load (measured at output storage cap) © Copyright 2011 Micro. Strain Inc.
Harvesting Strain Energy • Macro Fiber Composite, P 2 type (Smart Material Corp. , Sarasota, FL) • Ongoing PZT fatigue testing: OK after 10 billion cycles (>9 years at 30 Hz) • 4 point bending fixture delivers uniform strain field to PZT • PZT patch area: 3” x 1” © Copyright 2011 Micro. Strain Inc.
Power from vibration © Copyright 2011 Micro. Strain Inc.
Helicopter Vibrations Application Accel (Gs) Displacement Freq (Hz) (uin) Gearbox 1 800 -2 K ~30 at 1 KHz Rotating Structure(s) 0. 2 4 -20 ~6000 at 20 Hz © Copyright 2011 Micro. Strain Inc.
Tuned Vibration Harvester © Copyright 2011 Micro. Strain Inc.
Tunable, Resonant Piezoelectric Vibration Energy Harvester Power Output Profiles 52 Hz, 50 -200 m. G, P 2 MFC (Smart Materials, Inc. ) Micro. Strain’s Resonant Harvester factory tunable from 20 Hz to 200 Hz field tunable w/ external screw +/-8 Hz Micro. Strain, Inc. patents pending © Copyright 2011 Micro. Strain Inc.
FEA model predicts resonant frequency & strain levels Actual FEA Resonant Frequency (Hz) 81 80. 8 Strain on PZT elements (με ) 220 250 © Copyright 2011 Micro. Strain Inc.
Vibration Energy Harvesters: Gearbox Applications • • • Prime A gearbox data 25 g mass for ~100 Hz resonance 2. 9 m. W output 3. 6 cc volume ~0. 1 m. W/gram ~0. 8 m. W/cc Patents pending • • • Prime B gearbox data 16 g mass for ~1000 Hz resonance 5. 0 m. W output 1. 6 cc volume ~0. 3 m. W/gram ~3. 2 m. W/cc © Copyright 2011 Micro. Strain Inc.
Static FEA (ANSYS) • Ensure that endurance limit in amplifier not exceeded. • Estimate mean strain in Piezo Stack Mechanical Amplifier Piezo Stack © Copyright 2011 Micro. Strain Inc.
Latest Vibrational Energy Harvester being Developed under NAVAIR Phase II SBIR Contract © Copyright 2011 Micro. Strain Inc.
Inductive Harvester Patents Pending Micro. Strain proprietary information © Copyright 2011 Micro. Strain Inc.
Pitch-LINK Inductive Energy Harvesters: Micro. Strain proprietary information Patents pending Pitch Link Inductive Energy Harvester Output: 3. 4 m. W Volume: 155 cc , Weight: 70 grams Enclosure weight: 130 grams © Copyright 2011 Micro. Strain Inc.
Power from light © Copyright 2011 Micro. Strain Inc.
Solar Powered Wireless Strain Gauge • Two Panasonic BP-243318 Solar Modules (40 x 30 x 0. 5 mm^3) • Indoor lighting produced a wide range of output power (~100 to 6500 microwatts) • Results depended heavily on the type of lighting used and the distance from the light source © Copyright 2011 Micro. Strain Inc.
Solar Cell Output vs. Conditions Light Source 34 W Fluorescent, 200 cm 34 W Fluorescent, 10 cm 60 W Incandescent, 10 cm Window sill, cloudy day Window sill, sunny day Outdoors, sunny day Indoors, 1500 W Halogen, 1 m Indoors, 1500 W Halogen, 3 m Output Power 76 u. W 1368 u. W 942 u. W 4728 u. W 1564 u. W 19554 u. W 20612 u. W 6512 u. W 1258 u. W © Copyright 2011 Micro. Strain Inc.
Power From Heat © Copyright 2011 Micro. Strain Inc.
Micropelt’s Integrated Thermoharvester w/ heat sink http: //www. micropelt. com/applications/te_power_probe. php © Copyright 2011 Micro. Strain Inc.
Storing Energy © Copyright 2011 Micro. Strain Inc.
Critical Storage Requirements: • Trickle charged from microwatt source • Low leakage • High number of charge/discharge cycles • Support peak energy pulse required for brief radio transmission © Copyright 2011 Micro. Strain Inc.
Thin Film Lithium Batteries • 10 u. A/Hr battery cell Cymbet, Inc. (Minneapolis, MN) • 1 m. A/Hr Infinite Power Solutions (Golden, CO) Copyright © 2009 Micro. Strain Inc © Copyright 2011 Micro. Strain Inc.
Saving Energy During Wireless Communications © Copyright 2011 Micro. Strain Inc.
Strategies that save power Sleep processor between samples Open up filters on analog chain Optimize signal cond. turn-on sequence Use high impedance sensors (or no power sensors) • Transmit buffered super-packet • Collect data in bursts • Use data compression • • © Copyright 2011 Micro. Strain Inc.
Micro. Strain Extended Range, Synchronized (m. XRS™) Current Consumption Node type and sample rate RF comm. Distance (70 m) RF comm. Distance (1 Km) SG-Link-m. XRS 8 Hz 0. 68 m. A 0. 85 m. A SG-Link-m. XRS 128 Hz 4. 00 m. A 5. 85 m. A G-Link-m. XRS 8 Hz 0. 37 m. A 0. 45 m. A G-Link-m. XRS 128 Hz 2. 10 m. A 2. 89 m. A (w/ 1000 Ohm strain gauge) © Copyright 2011 Micro. Strain Inc.
Power Consumption w/ Standard Micro. Strain Wireless Sensors • • Temperature Strain Accelerometers General Sensors 1 Hz 512 Hz 25 Hz 1 ma 9. 4 ma 2 ma © Copyright 2011 Micro. Strain Inc.
Battery Life w/ 2 Tadiran AA (4. 8 Amp-Hr capacity) • • Temperature Strain Accel. Gen. Sensors 1 Hz 512 Hz 25 Hz 1 ma 9. 4 ma 200 days 21 days 100 days © Copyright 2011 Micro. Strain Inc.
Battery Life w/ Tadiran D-Cell (19 Amp-Hr capacity) • • Temperature Strain Accel. General Sensors 1 Hz 1 ma 512 Hz 9. 4 ma 25 Hz 2 ma 2. 1 years 84 days 1. 1 year © Copyright 2011 Micro. Strain Inc.
Consuming Energy: work to balance the “energy checkbook” © Copyright 2011 Micro. Strain Inc.
Critical Design Features: • Powering down between samples greatly reduces power consumption • Embedded routines allow microelectronics to adapt to the amount of available energy © Copyright 2011 Micro. Strain Inc.
EH-Link™ Harvests Power from Multiple Sources Converts AC and DC voltages from vibration, thermal, solar, and strain energy harvesters into DC power for immediate use and/or energy storage. Includes embedded triaxial accelerometers, temperature, and relative humidity sensors (patents issued and pending) Supports external bridge sensors Supports external energy storage © Copyright 2011 Micro. Strain Inc.
Army AATD H-60 A Wireless Sensor Installation © Copyright 2011 Micro. Strain Inc.
NAVAIR MH-60 S ARMY UH 60 A NASA UH 60 RASCAL Pitch. Link SG-Link Mil HS-Link WSDAMil RFID Micro. Strain Flight Test Node Locations © Copyright 2011 Micro. Strain Inc.
Full System Overview Patents pending © Copyright 2011 Micro. Strain Inc.
HS-Link 100 KHz Energy Harvesting, High Speed Accelerometer • High-speed, 16 bit, burst data-logging rates up to 100 KHz • On-board buffer stores up to 125, 000 measurements per sampling burst, 1, 000 points can be stored in the nodes non-volatile flash memory Patents pending • Harvester produces 100 m. W on simulated H-60 main gearbox vibration profile. 1 m. Ahr onboard thin film energy storage © Copyright 2011 Micro. Strain Inc.
G-Link-MIL Wireless Triaxial Accelerometer • Rugged, sealed wireless tri-axial MEMS accelerometer • 2 G or 10 G accelerometer range, onboard temperature sensor • Quick install with single ¼ -28 bolt through design Patents pending © Copyright 2011 Micro. Strain Inc.
SG-Link-MIL Wireless Strain Sensor • Rugged, sealed wireless strain acquisition unit • 3 bridge channels, capable of interfacing with a single gauge or rosette • Designed for quick installation with either traditional bonded foil or CRL type strain gauges • Can be installed on top of strain gauge(s), or nearby via shielded cable Patents pending © Copyright 2011 Micro. Strain Inc.
ID-LINK™ Active RFID Tags • Powered by an internal battery • Capable of both read and write • Structural tags can include critical data: time and date of specific flights on specific aircraft, number of flight hours, lifespan expended. • Autonomous, periodic transmit-on-demand (To. D) protocol • Data packet is 96 bit Do. D RFID w/ framing & checksum bytes. The Do. D 96 bit code includes a serial number and enables unique IDs for up to 2^96 = 7. 9 x 10^28 tagged items. © Copyright 2011 Micro. Strain Inc.
3 DM-GX 3 -25 Inertial & Magnetic Sensors • Smallest commercially available attitude, heading, reference sensor (AHRS) • Pitch, roll, and yaw computed with embedded software • Simultaneously samples inertial & magnetic sensors at 30 KHz, outputs at 1 KHz • Digital outputs : USB, RS-232/422/485 • Time syncs w/ data aggregator © Copyright 2011 Micro. Strain Inc.
WSDA-MIL Sensor Data Aggregator • Ruggedized, sealed, fanless single board computer with 600 MHz Intel XScale processor, 2 GB Compact Flash, Linux 2. 6 • Integrated 3 DM-GX 3 -25 Intertial Sensor • Ethernet, USB, and serial interfaces • Synchronizes to GPS time • 3 ppm backup timing reference Patents pending © Copyright 2011 Micro. Strain Inc.
Army AATD H-60 A Wireless Sensor Installation CRL Strain Gauge SG-Link-MIL © Copyright 2011 Micro. Strain Inc.
Army AATD H-60 A Wireless Sensor Installation WSDA-MIL, G-Link-MIL, ID-Link © Copyright 2011 Micro. Strain Inc.
Army AATD H-60 A Wireless Sensor Installation Energy Harvesting HS-Link-MIL Pitch-Link © Copyright 2011 Micro. Strain Inc.
NAVAIR H-60 S UGR Flight Test System © Copyright 2011 Micro. Strain Inc.
NAVAIR UGR MH-60 S Wireless Sensor Installation Pitch-Link SG-Link-MIL © Copyright 2011 Micro. Strain Inc.
NAVAIR UGR MH-60 S Wireless Sensor Installation SG-Link-MIL © Copyright 2011 Micro. Strain Inc.
Preliminary NAVAIR UGR Flight Test Results © Copyright 2011 Micro. Strain Inc.
Tailcone Strain Rosette Node 9002, Takeoff & Landing NAVAIR Safe Separation Flight Test 1 Wheels up Wheels down © Copyright 2011 Micro. Strain Inc.
Level Turn Right: Vehicle angular (pitch) rate data vs. time in the upper graph, with simultaneous energy harvesting wireless pitch link loads data in the lower graph. © Copyright 2011 Micro. Strain Inc.
Acknowledgements: Navy/NAVAIR SBIR PH II Navy BAA Army AATD Bell Helicopter Sikorsky Helicopter Thank You! © Copyright 2011 Micro. Strain Inc.
- Habitat monitoring sensor
- Habitat monitoring sensor
- Chapter 9 cellular respiration harvesting chemical energy
- Poznaska
- Explain how amp stimulates cellular respiration
- Chapter 9: cellular respiration: harvesting chemical energy
- Electron transport chain summary
- Bluetooth based smart sensor networks
- Single node architecture in wsn
- Bluetooth based smart sensor networks
- Habitat monitoring sensor
- Habitat monitoring sensor
- Difference between virtual circuit and datagram
- Basestore iptv
- Energy energy transfer and general energy analysis
- Energy energy transfer and general energy analysis
- Harvesting strategy
- Harvest collection
- Future of rainwater harvesting
- Autonomous data harvesting
- Rainwater harvesting calgary
- Rainwater tanks ireland
- Bibliography for rainwater harvesting
- Inovatif adalah
- Classification of fisheries
- Methods of harvesting a venture
- Direct harvesting definition
- Outcome harvesting training
- Droofs
- Function of rainwater harvesting
- Harvesting and marketing of fish
- Hypothesis of rainwater harvesting
- Coarse mesh in rainwater harvesting
- Rainwater harvesting introduction
- Simpson sod
- Corkglass
- Rain water harvesting autocad drawing
- Life cycle assessment of rainwater harvesting
- Rain water harvesting conclusion
- The primary harvesting machine used for field crops is the:
- Rainwater harvesting conclusion
- Internlnet storing
- Micro catchment water harvesting
- Fspos vägledning för kontinuitetshantering
- Typiska novell drag
- Nationell inriktning för artificiell intelligens
- Vad står k.r.å.k.a.n för
- Varför kallas perioden 1918-1939 för mellankrigstiden?
- En lathund för arbete med kontinuitetshantering
- Adressändring ideell förening
- Personlig tidbok fylla i
- Anatomi organ reproduksi
- Förklara densitet för barn
- Datorkunskap för nybörjare
- Boverket ka
- Debattartikel struktur
- Magnetsjukhus
- Nyckelkompetenser för livslångt lärande
- Påbyggnader för flakfordon
- Kraft per area
- Svenskt ramverk för digital samverkan
- Bo bergman jag fryser om dina händer
- Presentera för publik crossboss
- Vad är ett minoritetsspråk
- Plats för toran ark
- Treserva lathund
- Fimbrietratt