1 Data Warehouse DSS EIS DSS Data Warehouse













































































































- Slides: 109

1

¢ Data Warehouse 의 출현 배경 ¤ DSS, EIS ¤ 재래시스템과 DSS ¢ Data Warehouse의 정의 및 특징 ¤ Data Warehouse의 정의, 특정 ¤ Data Warehouse의 구조 ¤ Data Warehouse의 구축효과 ¤ Data Warehouse환경내 정보흐름 ¢ Data Warehouse Architecture ¢ Data Warehouse의 주요 개념 2















DSS EIS 변환/추출 기존 응용 시스템 DW Reports Data Processing (Transaction) Information Processing OLTP성 DB와 OLAP성 DB(DW)의 분리 17


19

¢ 일반 Data Model (OLTP) Ship Type District Credit Shipper Order Item Ship To Product Contact Loc Product Line Cust Loc Sales Order Product Group Contact Contrct Sales Rep Contrct Type Sales District Customer Sales Region Sales Division 20


¢ Dimensional Model (Star schema) Time Dimension time_key day_of_week month quarter year holiday_flag Sales Fact time_ key product_key store_key dollars_sold units_solds dollars_cost Product Dimension product_key description brand category Store Dimension store_key store_name address floor_plan_type Q: 지난 상반기 중 공휴일에 가장 잘 팔린 상표는? 22


24

¤주제 중심 (subject oriented) ¤통합성 (integrated) ¤시간성 (역사성; time-variant, historical) ¤갱신되지 않음 (nonvolatile) 25





Data Warehouse의 구조 highly summarized M e t a D a t a OLTP 로부터 load 10년간의 품목군별 월별 판매량 lightly summarized 5년간의 품목별 주간 판매량 Current Detail 올해 판매 구체적 데이타 (current detail) 지난해까지의 판매 구체적 데이타 (older detail) 30






Up-Flow In-Flow DW Out-Flow Meta-Flow Down-Flow 36

¢ In-flow email capture repair validate transform OLTP 시스템 Current Detail 외부자료 - 들여올 데이타 결정 DW - 무결성 (consistency/integrity) - 수정 보완 - 변환과 적용 37

highly summarized ¢ Up-flow lightly summarized Current Detail - 오래된 정보는 요약하여 위로 보냄 - 자주 쓰이는 정보는 미리 정제 - 사용자 가까이로 분배 (departmental processing) 38




정보화 (Informating) - Better information for analytic use - Integrate data from different systems - Better access to historical data 자동화 (Automating) DW 정보기술 투자액 • Data Warehouse의 목적 - Better access to current data OLTP 1960 데이터 수집 1970 데이터 접근 1980 1990 데이터 네비게이션 2000 데이터 마이닝 42







¢ Multi-dimensional model / Star schema (계 속) Ÿ 이러한 현상을 schema에 그대로 반영 product key description size. . . market key description region. . . Fact table : product key market key time key sales amount sales number. . . time key day of wk month quarter year holiday flag Dimension tables: 49








¢ 데이터 추출, 변환 ¢ Operational Data Store(ODS) ¢ Data Mart ¢ Meta. Data ¢ Multidimensional Database(MDB) 57

58



Extraction & Transforming Cleansing Merging & Supplementing OLTP Mapping ETT 구성 요소. Load controller ( 스케쥴링). Validator ( 정제). Converter (코드 변환). Logger (결과 저장). Meta. Data Manager. Aggregator. Exception Handler Transportation Maintain Data Warehouse 61



¢ 유형 ¤ type checking ¤ 정수, 실수, 날짜 타입 cf. ) 컴파일러의 type checking ¤ range checking ¤ 예) age 필드, 판매가 필드 Time Dimension key ¤ based on business rule ¤ dimension key checking 1988 김 1, 000 1989 이 2, 500 1991 박 3, 000 1992 심 2, 200 1993 김 2, 300 19993 김 2, 500 1996 서 3, 300 1991 1992 1993 1994 1995 1996 * * * * * 1991 박 3, 000 1992 심 2, 200 1993 김 2, 300 * * * 1996 서 3, 300 64


ETT tool (Micro. Soft) 66




¢ data warehouse의 한계 ¤DSS환경에만 운용가능, operational 환경에는 부적합 ¢ Operational Data Store ¤DW를 operational system 환경으로 확장 ¤Day-to-day operational arena ¤not tightly-coupled 70

A DSS C ODS DW EIS PC B 71

¢ Subject-oriented, integrated, volatile ¢ used for operational information processing ¢ current and near-current collection of data ¢ Transformation ¤ Tapping delta data ¤ collapsing ¤ large data -> small data ¤ selective sample, selective subset ¤ Moving ¤ move one component at a time 72

ODS - current, near current - detailed data - updates - generally small - homogeneous data - full-function - update-record-oriented - clerical day-to-day decision making - up-to the second decision DW - historical data - summary and detail - nonvolatile snapshots - large - heterogeneous data - load-and-access tech. - DSS analyst or management oriented community - long-term analysis & trend analysis 73




¢ 장점 ¤customize the data as the data flows into the data mart from the data warehouse. ¤The amount of historical data that is needed is a function of the department, not the corporation ¤resource utilization ¤The department can select software for their data mart that is very elegant and is tailored to fit their needs. 77








¢ 정의 ¤Computer software system designed to allow for the efficient and convenient storage and retrieval of large volumes of data that is ¤ 1) intimately related ¤ 2) stored, viewed analyzed from different perspectives ¢ 목적 ¤flexible, high performance access and analysis of large volumes of data 85

¢ Different perspectives ¤Sales volumes by model ¤Sales volumes by color ¤Sales volumes by dealership ¤Sales volumes over time ¢ What is the trend in sales volumes over a period of time for a specific model and color across a specific group of dealer ship? 86

모델 MINIBAN SPORT CAR SEDAN 색깔 BLUE RED WHITE 양 5 7 9 4 7 2 1 0 9 87

모 델 MINI VAN 7 5 9 SPORTS CAR 4 7 2 1 0 9 RED WHITE Sedan BLUE 색깔 88

89

¢ 10 x 10 arrays vs. 1000 records table ¤ 30 positions search vs. 1000 records scanning ¤ In average, 15 vs. 500 searches 90

91

¢ Ease of Data Presentation and Navigation ¤SQL의 한계, User의 관점 ¢ Ease of Maintenance ¤No additional overhead is required to transalate user queries into requests of data ¢ Performance ¤benchmark에서 증명됨 92


94

¢ Viewpoint의 변화 ¤ in RDB ¤require complex query or sort operation ¤ in MDB ¤just rotate without rearrangement of data ¢ Data Slicing 95

96

¢ 3 Dimension ¤ 6개의 view #1. #2. #3. #4. #5. #6. Model by Color (with Dealership Color by Model (with Dealership Color by Dealership (with Model Dealership by Color (with Model by Dealership (with Color Dealership by Model (with Color in in in the the the background) background) 97

98

¢ Select the desired positions along each dimesnion ¤ For the model dimension SPORTS COUPE and MINI VAN ¤ For the dealership dimension CARR and CLYDE ¤ For the color dimension METAL BLUE and NORMAL BLUE ¢ Data Dicing 99

100

¢ Different views of data ¤ Sales by Model and Dealership ¤ Sales by Model and District ¢ Separate, independent dimension? ¤ Dealership dimension and District dimension ¢ Define hierarchy within the same dimension ¤ Organization Dimension ¤ multiples level within a hierarchy ¤ Dealership, District, Region 101

102

¢ Drill-down ¤ Moving down ¤ More detailed analysis along the different levels ¢ Roll-up ¤ Moving up Vice President | Senior Manager | Sales Team | Sales Person Nation | Region | District | Dealership Product Family | Product Line | Product Personnel Organization Products Year | Quarter | Month | Week | Day Time 103

104

Organization Region Import Point District Distribution Point Dealership 105

¢ PRINT TOTAL. (SALES_VOLUME KEEP MODEL DEALERSHIP) 106

107


109
Refrão meditativo quaresma
Requiem aeternam dona eis domine
Mis eis
A is a web based interface and integration of mis dss eis
Dss eis
Olap
Dss warehouse
Data mining in data warehouse
Contoh data mart
Components of data warehouse
Perbedaan data warehouse dan data mart
Introduction to data warehouse
Perbedaan data warehouse dan data mining
Data mining dan data warehouse
Data warehouse and olap technology for data mining
What is data acquisition in data warehouse
Prinsip data warehouse
Rolap architecture
Data warehouse dan data mining
Olap data mart
Dss in data mining
Data management subsystem in dss
Bi vs dss
Eis pay scale
Contoh enharmonis
E-i verbs
Sistema de informacion eis
Sistemas eis
Fitra arsil
Uma voz do céu ressoa
To the principal
Hei and eis are examples of
Distributor ignition systems can be triggered by a
E i s prinzip
Crer ou não crer eis a questão
Where is egpty
Electrolux intuit 800 sense
Ragam sistem informasi
Coloco diante de ti dois caminhos
Eis que faço nova todas as coisas isaias
Eis wire & cable
Executive support system
Eis o cordeiro de deus que tira o pecado do mundo
Fungsi eis
O primeiro natal hino 231
Anuncio uma grande alegria volume 2
Eis que uma porta grande e oportuna
Quereis oferecer-vos a deus
Ersatzmutter urmel aus dem eis
Sistema de apoyo a ejecutivos
Eis+
Eis que o semeador saiu a semear
Fürst pückler eis
Tier eis
Stiklo lūžio rodiklis
Gtcs professional update
Eis
Eis
Saneto eis
Eis aberdeen
Visio mockup
Collier county data warehouse
Parallel data warehouse sql server 2012
Populating data warehouse
Epm data warehouse
Olam in data mining
Mount sinai data warehouse
Inmon cif
Data warehouse requirements gathering template
Azure sql data warehouse
Mpp architecture azure
Data warehouse empresarial
Data warehouse seminar
Data warehouse terminology
Data warehouse and olap technology
Data warehouse basic concepts
Slide data warehouse
Benefits of a data warehouse
Building blocks of data warehouse
Pengertian data warehouse
Advantages of data warehouse
Data warehouse principles
Data warehouse project plan
Data warehouse trends
Data warehouse staging area
Modélisation multidimensionnelle data warehouse
Data warehouse concept
Data warehouse continuous integration
Healthcare data warehousing
Generic two level data warehouse architecture
Ocas data warehouse
Data warehouse modeling tutorial
Data warehouse project plan
Physical design for data warehouse
Data warehouse is an environment not a product
Introduction to data warehouse
Basic concepts of data warehouse
Komponen data warehouse
Hive
Introduction to data warehouse
Statistical data warehouse
Liheap data warehouse
Characteristics of strategic information in data warehouse
Judicial data warehouse michigan
Azure sql data warehouse mpp
Hive data warehouse architecture
Data warehouse optimization mistakes
Slide data warehouse
Apex cuboid
Slide data warehouse