Total Synthesis of Rapamycin Isolation and Structure Determination

  • Slides: 45
Download presentation
Total Synthesis of Rapamycin Isolation and Structure Determination: Vézina, C. ; Kudelski, A. ;

Total Synthesis of Rapamycin Isolation and Structure Determination: Vézina, C. ; Kudelski, A. ; Sehgal, S. N. J. Antibiotics 1975, 28, 721. Swindells, D. C. N. ; White, P. S. ; Findlay, J. A. Can. J. Chem. 1978, 56, 2491. Findlay, J. A. ; Radics, L. Can. J. Chem. 1981, 59, 49. Mc. Alpine, J. B. ; Swanson, S. J. ; Jackson, M. ; Whittern, D. N. J. Antibiotics 1991, 44, C-3. Total Syntheses: Nicolaou, K. C. ; Chakraborty, T. K. ; Piscopio, A. D. ; Minowa, N. ; Bertinato, P. J. Am. Chem. Soc. 1993, 115, 4419. Hayward, C. M. ; Yohannes, D. ; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 9345. Romo, D. ; Meyer, S. D. ; Johnson, D. D. ; Schreiber, S. L. J. Am. Chem. Soc. 1993, 115, 7906. Smith, A. B. , III; Condon, S. M. ; Mc. Cauley, J. A. ; Leazer, J. L. , Jr. ; Leahy, J. W. ; Maleczka, R. E. , Jr. J. Am. Chem. Soc. 1995, 117, 5407 -5408.

Immunomodulators rapamycin FK-506 cyclosporin A

Immunomodulators rapamycin FK-506 cyclosporin A

Rapamycin’s Mechanism of Action IL-2 Receptor The Cell Cycle Restriction Point ? G 1

Rapamycin’s Mechanism of Action IL-2 Receptor The Cell Cycle Restriction Point ? G 1 p 70 S 6 Kinase S G 0 M Cdc 2 Kinase G 2 40 S Ribosomal Protein S 6 Schreiber, S. L. ; Albers, M. W. ; Brown, E. J. Acc. Chem. Res. 1993, 26, 412. Chung, J. ; Kuo, C. J. ; Crabtree, G. R. ; Blenis, J. Cell 1992, 69, 1227.

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

Synthesis of Oxazolidone A

Synthesis of Oxazolidone A

Synthesis of Oxazolidone A (continued)

Synthesis of Oxazolidone A (continued)

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

Synthesis of Subunit B Z-enolate

Synthesis of Subunit B Z-enolate

Synthesis of Subunit B (continued)

Synthesis of Subunit B (continued)

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

Synthesis of Vinyliodide D

Synthesis of Vinyliodide D

Synthesis of Vinyliodide D (continued)

Synthesis of Vinyliodide D (continued)

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

KCN's Retrosynthetic Analysis of Rapamycin rapamycin

The Union of A + B + E

The Union of A + B + E

Elaboration of EAB

Elaboration of EAB

The Introduction of D rapamycin EABD

The Introduction of D rapamycin EABD

The End Game – Tricarbonyl Formation Note: the first HF step removes the TES

The End Game – Tricarbonyl Formation Note: the first HF step removes the TES groups and the second HF step removes the TIPS groups

The End Game – The “Stitching” Stille Reaction rapamycin

The End Game – The “Stitching” Stille Reaction rapamycin

Summary • Completed the first total synthesis of (-)-rapamycin. – The longest linear sequence

Summary • Completed the first total synthesis of (-)-rapamycin. – The longest linear sequence from an article of commerce consists of thirty-seven steps. – The longest linear sequence from our five sub-targets is sixteen steps. – Total steps: 102 • Instructional applications of the Stille reaction, oxidation chemistry, chiral auxiliaries, organosilicons, protective groups, etc.

Smith’s Retrosynthetic Analysis of Rapamycin and Demethoxyrapamycin

Smith’s Retrosynthetic Analysis of Rapamycin and Demethoxyrapamycin

Synthesis of Iodide A

Synthesis of Iodide A

Synthesis of Dithiane B

Synthesis of Dithiane B

Synthesis of Dithiane C

Synthesis of Dithiane C

Retrosynthetic Analysis of Rapamycin

Retrosynthetic Analysis of Rapamycin

Synthesis of the Ortho Ester Exploitation of Alternate Ortho Ester Diastereomer Employed in Smith’s

Synthesis of the Ortho Ester Exploitation of Alternate Ortho Ester Diastereomer Employed in Smith’s Latrunculin Synthetic Venture

Synthesis of the E and Z Eneynes

Synthesis of the E and Z Eneynes

Mechanism of Olefin Isomerization

Mechanism of Olefin Isomerization

Stereochemistry of Eneyne Addition to Aldehyde

Stereochemistry of Eneyne Addition to Aldehyde

Synthesis of Dienylstannane D

Synthesis of Dienylstannane D

Retrosynthetic Analysis of Rapamycin

Retrosynthetic Analysis of Rapamycin

Construction of a C 27 -C 42 Aldehyde

Construction of a C 27 -C 42 Aldehyde

Construction of the C 22 -C 42 Subunit

Construction of the C 22 -C 42 Subunit

Synthesis of Demethoxyrapamycin: Construction of Advanced ABC Intermediate

Synthesis of Demethoxyrapamycin: Construction of Advanced ABC Intermediate

Retrosynthetic Analysis of Rapamycin and Demethoxyrapamycin: Introduction of the Tricarbonyl Segment

Retrosynthetic Analysis of Rapamycin and Demethoxyrapamycin: Introduction of the Tricarbonyl Segment

Tricarbonyl Formation I O 1) Na. H, Me. I, 15 -crown-5 (80%) O O

Tricarbonyl Formation I O 1) Na. H, Me. I, 15 -crown-5 (80%) O O OH O TBSO OMe O 2) HOAc, H 2 O, THF (86%) 3) TBSCl, imid. (97%) TMS 1) 1) DIBAL (98%) 2) Swern [O] (80%) TBSO O OH E 2 equiv. LHMDS, THF -78 °C (80%) TMS O CO 2 H O OMe OHC O N TBSO 2) Allylbromide, K 2 CO 3 DMF (98%) OMe N TMS

Tricarbonyl Formation II

Tricarbonyl Formation II

Pipecolinyl Acylation

Pipecolinyl Acylation

Proposed Endgame: Bis-Hydrostannylation

Proposed Endgame: Bis-Hydrostannylation

Attempted Macrocyclizations

Attempted Macrocyclizations

Preparation of ABC vinylstannane & DE vinyl iodide

Preparation of ABC vinylstannane & DE vinyl iodide

Proposed Endgame Strategy for the Total Synthesis of Rapamycin and Demethoxyrapamycin

Proposed Endgame Strategy for the Total Synthesis of Rapamycin and Demethoxyrapamycin

Macrocyclization

Macrocyclization

Demethoxyrapamycin

Demethoxyrapamycin

Rapamycin

Rapamycin

Summary • Developed a highly convergent and efficient total synthesis of (-)-rapamycin. – The

Summary • Developed a highly convergent and efficient total synthesis of (-)-rapamycin. – The longest linear sequence from an article of commerce consists of thirty-three steps. – The longest linear sequence from our five sub-targets is fourteen steps. – After the coupling of the C(1)-C(20) fragment to the C(22)C(42) fragment only three steps are required to complete the synthesis. • Completed the first total synthesis of demethoxyrapamycin. – The synthesis serves as a structure proof. – The synthesis establishes our unified synthetic approach as being amenable to the preparation of analogs.