Protein Concentration Determination Quantitative Determination of Proteins There

  • Slides: 43
Download presentation
Protein Concentration Determination

Protein Concentration Determination

Quantitative Determination of Proteins • There is no completely satisfactory single method to determine

Quantitative Determination of Proteins • There is no completely satisfactory single method to determine the concentration of protein in any given sample • The choice of the method depends on the nature of the protein, the nature of the other components in the protein sample, desired speed , accuracy and sensitivity of assay

Methods Used for Protein Determination • • • Biuret Test Folin-Ciocalteu ( Lowry )

Methods Used for Protein Determination • • • Biuret Test Folin-Ciocalteu ( Lowry ) Assay Bicinchoninic Acid ( BCA ) Assay Dye-Binding ( Bradford ) Assay Ultraviolet Absorbance

Protein Concentration • Lowry ( most cited reference in biology) – Color assay •

Protein Concentration • Lowry ( most cited reference in biology) – Color assay • BCA – Modification of Lowry: increased sensitivity and consistency • Bradford – Shifts Amax of dye from 465 nm to 595 nm • A 280 – Intrinsic absorbance – Relies on aromatic amino acids

Quali sono i gruppi cromofori presenti nelle proteine? A) Nei legami peptidici si osservano

Quali sono i gruppi cromofori presenti nelle proteine? A) Nei legami peptidici si osservano le seguenti transizioni: 1) n -> p* a 210 -220 nm, dai livelli di non legame n a quelli di antilegame p* 2) p -> p* a 190 -210 nm , da un livello di legame p ad uno di antilegame p* 3) n -> s* a 175 nm , dai livelli di non legame n a quelli di antilegame s* B) Nelle catene laterali: a parte le transizioni comuni al legame peptidico e quindi poco osservabili, sono da ricordare i gruppi aromatici (260 -280 nm), Trp, Tyr, Phe C) I gruppi prostetici

Quali sono i fattori che influenzano le proprietà di assorbimento di un cromoforo? 1)

Quali sono i fattori che influenzano le proprietà di assorbimento di un cromoforo? 1) p. H - il p. H del solvente determina lo stato di ionizzazione di cromofori ionizzabili e cambiano anche i rispettivi λmax e ε 2) la polarità - per cromofori polari, il valore di λmax per le transizioni n -> p* è minore in solventi polari (H 2 O, alcool) e maggiore in solventi non polari. 3) caratteristiche geometriche - la diversa organizzazione strutturale dei gruppi cromofori influenza fortemente sia ε che λmax.

Informazioni sull'accessibilità dei residui ionizzabili in proteine native. Se cambiamo il p. H: a)

Informazioni sull'accessibilità dei residui ionizzabili in proteine native. Se cambiamo il p. H: a) se non si osservano cambi spettrali per questi cromofori a p. H tali per cui devono essere in forma ionizzata, questo significa che sono nascosti in una regione non polare della proteina. b) se il cambio spettrale è osservato significa che i cromofori in questione sono accessibili e, dall'esame delle curve di titolazione spettrofotometriche è possibile capire se si trovano in un intorno polare facilmente accessibile o in un intorno formato da residui apolari e poco accessibili al solvente.

Beer-Lambert Law A=eb. C where: “A” is Absorbance “e” is Molar Extinction coefficient of

Beer-Lambert Law A=eb. C where: “A” is Absorbance “e” is Molar Extinction coefficient of solute “C” is solute concentration “b” is the length of the light path n For a given solute and spectrophotometer, “e” and “b” are constants n Let e x b = k (k is a constant) n Beer-Lambert Law becomes A = k C Absorbance proportional to solute concentration

A 280 • Uses intrinsic absorbance • Detects aromatic residues – Resonating bonds •

A 280 • Uses intrinsic absorbance • Detects aromatic residues – Resonating bonds • Depends on protein structure, native state and AA composition

Protein Determination Warburg-Christian Method This method is a direct spectrophotometric method developed to correct

Protein Determination Warburg-Christian Method This method is a direct spectrophotometric method developed to correct for nucleic acids contamination, leaving only the absorbance due to protein. Measures absorbance at 280 nm and at 260 nm also used to correct for nucleic acid concentration. Wharton and Mc. Carty, 1980

Determinazione della concentrazione proteica Lettura dell'assorbanza a 280 nm vantaggi: rapido, non distruttivo svantaggi:

Determinazione della concentrazione proteica Lettura dell'assorbanza a 280 nm vantaggi: rapido, non distruttivo svantaggi: non quantitativo, poiché il metodo è basato sull'assorbimento degli aminoacidi aromatici; i coefficienti di estinzione molare saranno quindi molto diversi da proteina e quindi la scelta di uno standard è molto difficile. Inoltre c'è una forte interferenza degli acidi nucleici. sensibilità: 0. 2 -2 mg/ml (scarsa) Correzione per acidi nucleici: Cproteine (mg/ml) = 1, 5 x A 280 - 0. 75 x A 260 Tempo : pochi minuti

Ultraviolet Absorbance Estimation Procedure • Zero spectrophotometer to water (or buffer) • Take the

Ultraviolet Absorbance Estimation Procedure • Zero spectrophotometer to water (or buffer) • Take the absorbance at 280 nm in a quartz cuvette • Change wavelength to 260 nm and zero with water (or buffer) • Take absorption at 260 nm in a quartz cuvette • Use the following equation to estimate the protein concentration: [Protein] (mg/m. L) = 1. 5*A 280 – 0. 75*A 260

La colorimetria Numerose sostanze non hanno un coefficiente d'estinzione significativo nel visibile, ma possono

La colorimetria Numerose sostanze non hanno un coefficiente d'estinzione significativo nel visibile, ma possono reagire quantitativamente con un'altra sostanza a formare un prodotto colorato. Questa proprietà viene sfruttata per la determinazione quantitativa di tali sostanze. La formazione del prodotto colorato (cromoforo) deve avvenire in condizioni standardizzate secondo un rapporto stechiometrico con la sostanza e si misura quindi l’assorbimento dei campioni rispetto a quella di un bianco, contenuto nella cuvetta di riferimento e costituito da tutti i reagenti tranne la sostanza da determinare.

E' necessario prima della misurazione dei vari campioni azzerare contro il bianco. Si pongono

E' necessario prima della misurazione dei vari campioni azzerare contro il bianco. Si pongono poi i valori delle varie letture in funzione della quantità o della concentrazione della sostanza in esame che forma il prodotto colorato. Questo grafico è la curva di taratura. A questo punto è possibile dosare quantità ignote della sostanza facendo avvenire la reazione colorimetrica nelle stesse condizioni, misurando l'estinzione ed estrapolando l'altro valore dalla curva di taratura.

Using Standard Curve Protein unknowns: Protein A 750 ( g) 33 92 0. 200

Using Standard Curve Protein unknowns: Protein A 750 ( g) 33 92 0. 200 0. 550

The biuret reaction can be used for both qualitative and quantitative analysis of protein.

The biuret reaction can be used for both qualitative and quantitative analysis of protein. The biuret method depends on the presence of peptides bonds in proteins. When a solution of proteins is treated with cupric ions (Cu 2+) in a moderately alkaline medium, a purple colored Cu 2+- peptide complex is formed which can be measured quantitatively by spectrophotometer in the visible region. So, biuret reagent is alkaline copper sulfate solution.

The intensity of the color produced is proportional to the number of peptide bonds

The intensity of the color produced is proportional to the number of peptide bonds that are reacting, and therefore to the number of protein molecules present in the reaction system. The reaction don't occur with amino acids because the absence of peptide bonds, and also that with di-peptide because presence of only one peptide bond, but do with tri-, oligo-, and poly-peptides. Biuret reaction needs presence of at least two peptide bonds in a molecule. The reaction occurs with any compound containing at least two bonds of: -HN-CO- , -HN-CH 2 - , -HN-CS-

The Biuret reagent is made of KOH and hydrated copper(II) sulfate, together with potassium

The Biuret reagent is made of KOH and hydrated copper(II) sulfate, together with potassium sodium tartrate, which stabilize the cupric ions. Proteins in the alkaline environment reduce Cu 2+ to Cu+, which forms a coordination complex with proteins, leading to a purple color change.

Biuret Test • Reproduciple • Very few interfering agents (ammonium salts (Tris) being one

Biuret Test • Reproduciple • Very few interfering agents (ammonium salts (Tris) being one such agent ) • Fewer deviations than with the Lowry or ultraviolet absorption methods • Requires large amounts protein (1 -20 mg) • Low sensitivity

Lowry Assay • A widely-used method of measuring protein concentration • A colorimetric assay

Lowry Assay • A widely-used method of measuring protein concentration • A colorimetric assay – Amount of blue color proportional to amount of protein – Absorbance read using 750 nm light • Lowry et al, 1951

The exact mechanism of color formation in the Lowry assay remains poorly understood. The

The exact mechanism of color formation in the Lowry assay remains poorly understood. The assay is performed in two distinct steps: 1) Protein is reacted with alkaline cupric sulfate in the presence of tartrate for 10 minutes at room temperature. During this incubation, a tetradentate copper complex forms from four peptide bonds and one atom of copper (this is the "biuret reaction"). 2) A phosphomolybdic-phosphotungstic acid solution is added. This compound (called Folin-phenol reagent) becomes reduced, producing an intense blue color. It is believed that the color enhancement occurs when the tetradentate copper complex transfers electrons to the phosphomolybdic-phosphotungstic acid complex. The blue color continues to intensify during a 30 minute room temperature incubation. It has been suggested that during the 30 minute incubation, a rearrangement of the initial unstable blue complex leads to the stable final blue colored complex which has higher absorbance (Lowry, et al. 1951; Legler, et al. 1985).

Chemistry of the Lowry Assay Two reactions make the blue color develop: • Reaction

Chemistry of the Lowry Assay Two reactions make the blue color develop: • Reaction 1 – Cu 2+ + peptide bonds Cu 1+-peptide bond complex (secondary reaction of the Biuret reaction) – Produces purple color • Reaction 2 – Folin reagent + Cu 1+-complex reduced Folin reagent – Produces blue color The reduction is especially influenced by the presence of three particular amino acid residues in proteins: cysteine/cystine, tyrosine and tryptophan. Apparently these amino acid reduce the Folin reagent

Vantaggi: riproducibilità, piccole variazioni fra proteine differenti Svantaggi: Molte sostanze possono interferire, reazioni lente

Vantaggi: riproducibilità, piccole variazioni fra proteine differenti Svantaggi: Molte sostanze possono interferire, reazioni lente (40 minuti), campione non recuperabile perché denaturato Sensibilità: 0. 5 -10 μg/ml Retta di taratura con BSA (Albumina di Siero Bovino) Lunghezza d'onda: 750 nm

Folin-Ciocalteu ( Lowry ) Assay • Add samples containing up to 100 µg of

Folin-Ciocalteu ( Lowry ) Assay • Add samples containing up to 100 µg of protein. • Bring all tubes to 1 m. L total volume with water. • Prepare the Assay Mix and diluted Folin-Ciocalteu reagent. • To each tube add 5 m. L of assay mix and thoroughly vortex. • Incubate tubes at room temperature for 10 min. • Add 0. 5 m. L of diluted Folin-Ciocalteu reagent. Vortex immediately. • Incubate at room temperature for 30 min. • Vortex the tubes, zero the spectrophotometer with the blank and measure absorbance at 500 -750 nm.

Protein Determination The BCA (Bicinchoninic Acid) Method Uses a similar principle as that described

Protein Determination The BCA (Bicinchoninic Acid) Method Uses a similar principle as that described in the biuret reaction except that BCA is included and sensitivity is increased. This process is a two-step reaction. Protein + Cu 2+ + OHCu 1+ + 2 BCA (562 nm). Cu 1+/BCA chromophore Pierce Protein Assay Technical Handbook, 1999

Bicinchoninic Acid ( BCA ) Assay • • P. K. Smith et al. (1985)

Bicinchoninic Acid ( BCA ) Assay • • P. K. Smith et al. (1985) Anal. Biochem. 150: 76. K. J. Wiechelman et al. (1988) Anal. Biochem. 175: 231

Bicinchoninic Acid ( BCA ) Assay • Very sensitive and rapid if you use

Bicinchoninic Acid ( BCA ) Assay • Very sensitive and rapid if you use elevated temperatures • Compatible with many detergents • Working reagent is stable • Very little variation in response between different proteins • Broad linear working range • The reaction does not go to completion when performed at room temperature

Il metodo Bradford Questo metodo è molto popolare perchè semplice, rapido, economico e sensibile.

Il metodo Bradford Questo metodo è molto popolare perchè semplice, rapido, economico e sensibile. Esso si basa sull'azione del Coomassie brilliant blue G-250 (CBBG) che si lega specificatamente a residui di arginina, triptofano, tirosina, istidina e fenilalanina. Da notare che agisce primariamente con i residui di arginina ( 8 volte più che con gli altri residui elencati). Il CBBG si lega a questi residui in una forma anionica, con assorbanza massima a 595 nm. Il colorante nella soluzione madre si trova in forma cationica che ha un massimo di assorbanza a 470 nm.

The Bradford Assay Add Dye Reagent Mix and wait 5+ minutes Read A 595

The Bradford Assay Add Dye Reagent Mix and wait 5+ minutes Read A 595 High protein Protein sample Low protein No protein

Dye-Binding ( Bradford ) Assay • Highly specific for protein • Fast and inexpensive

Dye-Binding ( Bradford ) Assay • Highly specific for protein • Fast and inexpensive • Very sensitive [1 -20 µg (micro assay) 20 -200 µg (macro assay)] • Compatible with a wide range of substances • Extinction co-efficient for the dye-protein complex is stable over 10 orders of magnitude (assessed in albumin) • Dye reagent is stable for approximately one hour • Non-linear standard curve over wide ranges • Response to different proteins can vary widely, choice of standard is very important

metodo di Bradford Principio: Il colorante Coomasie Blue forma composti colorati in "blu" con

metodo di Bradford Principio: Il colorante Coomasie Blue forma composti colorati in "blu" con le proteine, tramite legami elettrostatici proteina-gruppi sulfonici del colorante in soluzione acida. Vantaggi: rapidità (5 minuti), sensibilità Svantaggi: qualche variabilità fra proteine diverse , campione non recuperabile perché denaturato. Sensibilità: 2 -20 μg/ml Retta di taratura: con BSA Lunghezza d'onda: 595 nm