Performance of the Medipix and Timepix devices for

  • Slides: 40
Download presentation
Performance of the Medipix and Timepix devices for the recognition of electron-gamma radiation fields

Performance of the Medipix and Timepix devices for the recognition of electron-gamma radiation fields C. Teyssier 1, 3, J. Bouchami 1, F. Dallaire 1, J. Idarraga 1, C. Leroy 1, S. Pospisil 2, J. Solc 2, O. Scallon 1, Z. Vykydal 2 1 Université de Montréal, Montréal (Québec) H 3 C 3 J 7, Canada 2 Institute of Experimental and Applied Physics of the CTU in Prague, Horská 3 a/22, CZ-12800 Praha 2 – Albertov, Czech Republic 3 Universite de Lyon, F-69003, Lyon, France ; Universite Lyon 1, Villeurbanne, France ; CNRS/IN 2 P 3, UMR 5822, Institut de Physique Nucleaire de Lyon, F-69622 Villeurbanne, France Carried out within the CERN Medi. Pix Collaboration Cécile Teyssier September 2010

 • Silicon pixelated detectors designed for imaging • Also used in fundamental physics

• Silicon pixelated detectors designed for imaging • Also used in fundamental physics research • Characterisation of a radiation field – Nature of radiation? → study of electron and photon fields – Intensity of radiation? → study of photon detector efficiency Cécile Teyssier September 2010

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition II/ Mistagging: photon or electron? • Experimental setup and method • Results for Ru source III/ Photon detector efficiency • Experimental setup • Results • Geant 4 simulation Cécile Teyssier September 2010

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition II/ Mistagging: photon or electron? • Experimental setup and method • Results for Ru source III/ Photon detector efficiency • Experimental setup • Results • Geant 4 simulation Cécile Teyssier September 2010

MPX or Medipix 2 -USB Device : - 300 µm thick silicon pixel detector

MPX or Medipix 2 -USB Device : - 300 µm thick silicon pixel detector - 256 x 256 pixels each of 55 x 55 μm 2 area Cécile Teyssier - bump-bonded to Medipix 2 readout chip containing in each pixel cell : preamplifier, comparator and counter. September 2010

Charge sharing effect Energy Particle Threshold preamplifier comparator Cluster size counter 001 Cécile Teyssier

Charge sharing effect Energy Particle Threshold preamplifier comparator Cluster size counter 001 Cécile Teyssier September 2010

Medipix 2 response to different ionizing particles Alpha particles 137 Cs (t = 0.

Medipix 2 response to different ionizing particles Alpha particles 137 Cs (t = 0. 2 sec) Photon, Electron 241 Am (t = 2 sec) Electron Cécile Teyssier 106 Ru (t = 0. 15 sec) September 2010

Pattern recognition Valid under certain experimental conditions Cécile Teyssier September 2010

Pattern recognition Valid under certain experimental conditions Cécile Teyssier September 2010

Timepix device • Same structure as Medipix but equipped with a clock • Measurement

Timepix device • Same structure as Medipix but equipped with a clock • Measurement of the time over threshold in each pixel (TOT) • Evaluation of energy deposit after calibration Cécile Teyssier September 2010

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition II/ Mistagging: photon or electron? • Experimental setup and method • Results for Ru source III/ Photon detector efficiency • Experimental setup • Results • Geant 4 simulation Cécile Teyssier September 2010

Why? • Photons detected via 3 interactions – Photoelectric effect – Compton effect –

Why? • Photons detected via 3 interactions – Photoelectric effect – Compton effect – Pair creation • Hard to differentiate electrons produced by photons from electrons of the field. • Aim → To evaluate a mistagging rate Cécile Teyssier September 2010

Experimental setup Medipix 2 -USB 106 Ru source 137 Cs source Vacuum θ rotation

Experimental setup Medipix 2 -USB 106 Ru source 137 Cs source Vacuum θ rotation angle of the detector with respect to the vertical axis 12 Cécile Teyssier September 2010

Activity reconstruction • First case: all the tracks are considered • Second case :

Activity reconstruction • First case: all the tracks are considered • Second case : tracks associated to electrons • Third case : tracks associated to photons Fraction of solid angle Cécile Teyssier September 2010

Results for the 106 Ru source Simplified spectrum: • Gamma: 512 ke. V 20.

Results for the 106 Ru source Simplified spectrum: • Gamma: 512 ke. V 20. 4% ; 622 ke. V 9. 9%. Known activity ± 5% • Electron: 2 beta decays Mean beta- energy: 1410 ke. V and 10. 03 ke. V • Configuration legend Photon: S: Single hits, D: Double hits, T: Triple hits, Q: Quad hits, L: Long gamma Electron: C: Curly Cécile Teyssier September 2010

Evolution of the configuration Cécile Teyssier September 2010

Evolution of the configuration Cécile Teyssier September 2010

Summary on mistagging Mis-association stongly depends on: • Energy of the particles (other experiment)

Summary on mistagging Mis-association stongly depends on: • Energy of the particles (other experiment) • Incidence of the particles • Configuration setup → mistagging rate can be evaluated but is hard to extrapolate to another mixed field Cécile Teyssier September 2010

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition

I/ Presentation of the detectors • Structure • Charge sharing effect • Pattern recognition II/ Mistagging: photon or electron? • Experimental setup and method • Results for Ru source III/ Photon detector efficiency • Experimental setup • Results • Geant 4 simulation Cécile Teyssier September 2010

Why? • Until now, detection efficiency calculated by considering the interaction probability in the

Why? • Until now, detection efficiency calculated by considering the interaction probability in the silicon layer • But photons interact with surrounding materials and produced electrons can be detected, increasing the detector efficiency. • Aim → to quantify these changes Cécile Teyssier September 2010

Experimental setup Simplified gamma spectrum: 32 ke. V 5. 8% ; 36 ke. V

Experimental setup Simplified gamma spectrum: 32 ke. V 5. 8% ; 36 ke. V 1. 3% ; 662 ke. V 85. 1%. 137 Timepix-USB Air or vacuum Cs source 3 mm thick Al layer (to get rid of e-) Cécile Teyssier Threshold 7. 8 ke. V 19 September 2010

Rate of particles interacting with the detector • Theoretical rate For air and vacuum:

Rate of particles interacting with the detector • Theoretical rate For air and vacuum: • Experimental rates: Cécile Teyssier September 2010

Experimental spectrum with timepix 33 ke. V Compton electron from 662 ke. V photons:

Experimental spectrum with timepix 33 ke. V Compton electron from 662 ke. V photons: • Mean energy: 253 ke. V • Maximal energy: 478 ke. V → compatible Cécile Teyssier September 2010

Simulation • Geant 4 environment • Programmation of the experimental elements • Reproduction of

Simulation • Geant 4 environment • Programmation of the experimental elements • Reproduction of Medipix behaviour → same type of files generated. Silicon layer source Green rays: photon Red rays: electron Cécile Teyssier September 2010

Comparison of the rates • experimental Cécile Teyssier • simulated September 2010

Comparison of the rates • experimental Cécile Teyssier • simulated September 2010

Simulation results and comparison Cécile Teyssier September 2010

Simulation results and comparison Cécile Teyssier September 2010

Origine of detected particles - Air Cécile Teyssier September 2010

Origine of detected particles - Air Cécile Teyssier September 2010

Origine of detected particles - Vacuum residual air Cécile Teyssier September 2010

Origine of detected particles - Vacuum residual air Cécile Teyssier September 2010

Summary on photon detection • indirect detection → correction factor to theoretical detector efficiency.

Summary on photon detection • indirect detection → correction factor to theoretical detector efficiency. • Other experimental setups and other photon energies → other correction factors • Promising results of the simulation • Improvements to do: Better definition of the experimental elements in the simulation (first results) More precise spectrum Cécile Teyssier September 2010

Conclusion • Photons or electrons? • Mistagging rate depends on several parameters that makes

Conclusion • Photons or electrons? • Mistagging rate depends on several parameters that makes extrapolation difficult. • Photon detection efficiency greatly improved by surrounding materials. Correction factors can be evaluated. • Geant 4 simulation for Medipix gives promising results Cécile Teyssier September 2010

Thank you! Cécile Teyssier September 2010

Thank you! Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010

Evaluation of mistagging rate Negative mistagging if Positive mistagging if i is for photon

Evaluation of mistagging rate Negative mistagging if Positive mistagging if i is for photon or electron Cécile Teyssier September 2010

Mistagging rate for Ru Cécile Teyssier September 2010

Mistagging rate for Ru Cécile Teyssier September 2010

results for the 137 Cs source Simplified spectrum: • Gamma: 32 ke. V 5.

results for the 137 Cs source Simplified spectrum: • Gamma: 32 ke. V 5. 8% ; 36 ke. V 1. 3% ; 662 ke. V 85. 1%. • Electron: Mean beta- energy: 187. 1 ke. V 625 ke. V 7. 8%; 656 ke. V 1. 4% Cécile Teyssier September 2010

Evolution of the configuration Cécile Teyssier September 2010

Evolution of the configuration Cécile Teyssier September 2010

If we considere all the tracks as electrons… Cécile Teyssier September 2010

If we considere all the tracks as electrons… Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010

Prague results Cécile Teyssier September 2010

Prague results Cécile Teyssier September 2010

Cécile Teyssier September 2010

Cécile Teyssier September 2010