Centroid index Cluster level quality measure Pasi Frnti

  • Slides: 51
Download presentation
Centroid index Cluster level quality measure Pasi Fränti 3. 9. 2018

Centroid index Cluster level quality measure Pasi Fränti 3. 9. 2018

Clustering accuracy

Clustering accuracy

Classification accuracy Known class labels Solution A: Solution B: Oranges 100 % Precision =

Classification accuracy Known class labels Solution A: Solution B: Oranges 100 % Precision = 5/7 = 71% Recall = 5/5 = 100% Apples 100 % P Precision = 3/3 = 100% Recall = 3/5 = 60%

Clustering accuracy No class labels! Solution A: ? ? ? Solution B:

Clustering accuracy No class labels! Solution A: ? ? ? Solution B:

Internal index Sum-of-squared error (MSE) Solution B: Solution A: 11. 3 30 18. 7

Internal index Sum-of-squared error (MSE) Solution B: Solution A: 11. 3 30 18. 7 31. 2 40 8. 8

External index Compare two solutions Solution B: Solution A: 5 5/7 = 71% 2

External index Compare two solutions Solution B: Solution A: 5 5/7 = 71% 2 2/5 = 40% 3 3/5 = 60% • Two clustering (A and B) • Clustering against ground truth

Set-matching based methods M. Rezaei and P. Fränti, "Set-matching measures for external cluster validity",

Set-matching based methods M. Rezaei and P. Fränti, "Set-matching measures for external cluster validity", IEEE Trans. on Knowledge and Data Engineering, 28 (8), 2173 -2186, August 2016.

What about this…? Solution 2: Solution 1: ? Solution 3: ?

What about this…? Solution 2: Solution 1: ? Solution 3: ?

External index Selection of existed methods Pair-counting measures • Rand index (RI) [Rand, 1971]

External index Selection of existed methods Pair-counting measures • Rand index (RI) [Rand, 1971] • Adjusted Rand index (ARI) [Hubert & Arabie, 1985] Information-theoretic measures • Mutual information (MI) [Vinh, Epps, Bailey, 2010] • Normalized Mutual information (NMI) [Kvalseth, 1987] Set-matching based measures • • Normalized van Dongen (NVD) [Kvalseth, 1987] Criterion H (CH) [Meila & Heckerman, 2001] Purity [Rendon et al, 2011] Centroid index (CI) [Fränti, Rezaei & Zhao, 2014]

Cluster level measure

Cluster level measure

Point level vs. cluster level Point-level differences Cluster-level mismatches

Point level vs. cluster level Point-level differences Cluster-level mismatches

Point level vs. cluster level Agglomerative (AC) ARI=0. 91 ARI=0. 82 Random Swap (RS)

Point level vs. cluster level Agglomerative (AC) ARI=0. 91 ARI=0. 82 Random Swap (RS) K-means ARI=0. 88

Point level vs. cluster level

Point level vs. cluster level

Centroid index

Centroid index

Pigeon hole principle • 15 pigeons (clustering A) • 15 pigeon holes (clustering B)

Pigeon hole principle • 15 pigeons (clustering A) • 15 pigeon holes (clustering B) • Only one bijective (1: 1) mapping exists

Centroid index (CI) [Fränti, Rezaei, Zhao, Pattern Recognition 2014] CI = 4 empty 15

Centroid index (CI) [Fränti, Rezaei, Zhao, Pattern Recognition 2014] CI = 4 empty 15 prototypes (pigeons) 15 real clusters (pigeon holes) empty

Definitions Find nearest centroids (A B): Detect prototypes with no mapping: Number of orphans:

Definitions Find nearest centroids (A B): Detect prototypes with no mapping: Number of orphans: Centroid index: Number of zero mappings! Mapping both ways

Example S 2 1 1 Indegree Counts 2 1 1 Mappings 0 1 CI

Example S 2 1 1 Indegree Counts 2 1 1 Mappings 0 1 CI = 2 1 1 0 1 1 Value 0 indicates an orphan cluster

Example Birch 1 CI = 7 Mappings

Example Birch 1 CI = 7 Mappings

Example Mappings Birch 2 1 0 1 1 Two clusters but only one allocated

Example Mappings Birch 2 1 0 1 1 Two clusters but only one allocated 3 1 Three mapped into one CI = 18

Example Mappings Birch 2 2 Two clusters but only one allocated 1 0 1

Example Mappings Birch 2 2 Two clusters but only one allocated 1 0 1 1 0 Three mapped into one CI = 18 1

1 4 2 0 Unbalanced example K-means result KM GT CI = 4 500

1 4 2 0 Unbalanced example K-means result KM GT CI = 4 500 2000 492 1011 458 490 560 989 K-means tend to put too many clusters here … … and too few here

Unbalanced example K-means result GT KM CI = 4 5 1 0 0 0

Unbalanced example K-means result GT KM CI = 4 5 1 0 0 0 1

Experiments

Experiments

Mean Squared Errors Green = Correct clustering structure Clustering quality (MSE) Data set KM

Mean Squared Errors Green = Correct clustering structure Clustering quality (MSE) Data set KM RKM KM++ XM Bridge 179. 76 176. 92 173. 64 179. 73 House 6. 67 6. 43 6. 28 6. 20 Miss America 5. 95 5. 83 5. 52 5. 92 House 3. 61 3. 28 2. 50 3. 57 Birch 1 Birch 2 Birch 3 5. 47 7. 47 2. 51 5. 12 6. 29 2. 07 AC 168. 92 6. 27 5. 36 2. 62 RS 164. 64 5. 96 5. 28 2. 83 4. 73 2. 28 1. 96 4. 64 2. 28 1. 86 GKM GA 164. 78 161. 47 5. 91 5. 87 5. 21 5. 10 2. 44 5. 01 5. 65 2. 07 4. 88 3. 07 1. 92 - S 1 19. 71 8. 92 S 2 20. 58 13. 28 15. 87 13. 44 13. 28 S 3 19. 57 16. 89 17. 70 16. 89 S 4 17. 73 15. 70 15. 71 17. 52 15. 70 15. 71 15. 70 Raw numbers 8. 92 8. 93 8. 92 don’t tell much 4. 64 2. 28 1. 86 8. 92

Adjusted Rand Index [Hubert & Arabie, 1985] Data set Adjusted Rand Index (ARI) KM

Adjusted Rand Index [Hubert & Arabie, 1985] Data set Adjusted Rand Index (ARI) KM Bridge 0. 38 House 0. 40 Miss America 0. 19 RKM KM++ XM AC RS GKM GA 0. 40 0. 39 0. 37 0. 43 0. 52 0. 50 1 0. 40 0. 44 0. 47 0. 43 0. 53 1 0. 19 0. 18 0. 20 0. 23 1 House 0. 46 0. 49 0. 52 0. 46 0. 49 - 1 Birch 2 Birch 3 S 1 S 2 S 3 S 4 0. 85 0. 93 0. 98 0. 91 0. 96 1. 00 - 1 0. 86 0. 95 0. 86 1 1 - 1 0. 74 0. 82 0. 87 0. 82 0. 86 0. 83 1. 00 0. 80 0. 99 0. 89 0. 98 0. 99 0. 86 0. 96 0. 92 0. 96 0. 82 0. 93 0. 94 0. 77 0. 93 0. 91 high How is good? 1. 00 1 1. 00

Normalized Mutual information [Kvalseth, 1987] Data set KM Normalized Mutual Information (NMI) RKM KM++

Normalized Mutual information [Kvalseth, 1987] Data set KM Normalized Mutual Information (NMI) RKM KM++ XM AC RS GKM Bridge 0. 77 0. 78 House 0. 80 Miss America 0. 64 GA 0. 78 0. 77 0. 80 0. 83 0. 82 1. 00 0. 81 0. 82 0. 81 0. 83 0. 84 1. 00 0. 63 0. 64 0. 66 1. 00 House 0. 81 0. 82 - 1. 00 Birch 1 Birch 2 Birch 3 S 1 S 2 S 3 S 4 0. 95 0. 97 0. 99 0. 96 0. 98 1. 00 - 1. 00 0. 96 0. 97 0. 99 0. 97 1. 00 - 1. 00 0. 94 0. 93 0. 96 - 1. 00 0. 93 1. 00 1. 00 0. 99 0. 95 0. 99 0. 93 0. 99 0. 92 0. 97 0. 94 0. 97 0. 88 0. 94 0. 95 0. 85 0. 94

Normalized Van Dongen [Kvalseth, 1987] Data set Bridge House Miss America House Birch 1

Normalized Van Dongen [Kvalseth, 1987] Data set Bridge House Miss America House Birch 1 Birch 2 Birch 3 S 1 S 2 S 3 S 4 Normalized Van Dongen (NVD) KM RKM KM++ XM AC RS GKM GA 0. 45 0. 44 0. 60 0. 42 0. 43 0. 60 0. 43 0. 40 0. 61 0. 46 0. 37 0. 59 0. 38 0. 40 0. 57 0. 32 0. 33 0. 55 0. 33 0. 31 0. 53 0. 00 0. 40 0. 37 0. 34 0. 39 0. 34 - 0. 00 0. 09 0. 12 0. 19 0. 09 0. 11 0. 08 0. 11 0. 04 0. 08 0. 12 0. 00 0. 02 0. 04 0. 01 0. 03 0. 10 0. 00 0. 02 0. 04 0. 06 0. 02 0. 09 0. 00 0. 13 0. 00 0. 06 0. 01 0. 02 0. 05 0. 03 0. 13 0. 00 0. 06 -is Lower 0. 00 better 0. 04 0. 00 0. 02 0. 04

Centroid Similarity Index [Fränti, Rezaei, Zhao, 2014] Centroid Similarity Index (CSI) Data set Bridge

Centroid Similarity Index [Fränti, Rezaei, Zhao, 2014] Centroid Similarity Index (CSI) Data set Bridge House Miss America House Birch 1 Birch 2 Birch 3 S 1 S 2 S 3 S 4 KM RKM KM++ XM AC RS GKM GA 0. 47 0. 49 0. 32 0. 51 0. 50 0. 32 0. 49 0. 54 0. 32 0. 45 0. 57 0. 33 0. 57 0. 55 0. 38 0. 62 0. 63 0. 40 0. 63 0. 66 0. 42 1. 00 0. 54 0. 57 0. 63 0. 54 0. 57 0. 62 --- 1. 00 0. 87 0. 76 0. 71 0. 83 0. 82 0. 89 0. 87 0. 94 0. 82 1. 00 0. 99 0. 98 0. 94 0. 87 1. 00 0. 99 0. 98 0. 93 0. 81 1. 00 0. 91 0. 99 1. 00 0. 86 1. 00 0. 98 0. 85 1. 00 --1. 00 Ok but---lacks 0. 93 --1. 00 threshold 1. 00 0. 99 0. 98

Centroid Index [Fränti, Rezaei, Zhao, 2014] C-Index (CI 2) Data set Bridge House Miss

Centroid Index [Fränti, Rezaei, Zhao, 2014] C-Index (CI 2) Data set Bridge House Miss America House Birch 1 Birch 2 Birch 3 S 1 S 2 S 3 S 4 KM RKM KM++ XM AC RS GKM GA 74 56 88 63 45 91 58 40 67 81 37 88 33 31 38 33 22 43 35 20 36 0 0 0 43 39 22 47 26 23 --- 0 7 18 23 2 2 1 1 3 11 11 0 0 1 4 7 0 0 4 12 10 0 1 0 0 7 0 0 0 1 0 0 2 0 0 ------0 0 0

Going deeper…

Going deeper…

Accurate clustering Bridge GAIS-2002 similar to GAIS-2012 ? GKM RS GA RS 8 M

Accurate clustering Bridge GAIS-2002 similar to GAIS-2012 ? GKM RS GA RS 8 M GAIS-2002 + RS 1 M + RS 8 M GAIS-2012 + RS 1 M + RS 8 M + PRS + RS 8 M + Method Global K-means Random swap (5 k) Genetic algorithm Random swap (8 M) GAIS + RS (1 M) -0. 04 GAIS + RS (8 M) GAIS + RS (1 M) GAIS + RS (8 M) GAIS + PRS GAIS + RS (8 M) + PRS MSE 164. 78 164. 64 161. 47 161. 02 160. 72 160. 49 160. 43 160. 68 160. 45 160. 39 160. 33 160. 28 -0. 29

GAIS’ 02 and GAIS’ 12 the same? Virtually the same MSE-values 160. 8 GAIS

GAIS’ 02 and GAIS’ 12 the same? Virtually the same MSE-values 160. 8 GAIS 2002 160. 72 160. 6 160. 4 160. 2 -0. 04 -0. 29 160. 43 GAIS 2012 160. 68 -0. 29 -0. 04 GAIS 2002 +RS(8 M) 160. 39 GAIS 2002 +RS(8 M)

GAIS’ 02 and GAIS’ 12 the same? But different structure! 160. 8 GAIS 2002

GAIS’ 02 and GAIS’ 12 the same? But different structure! 160. 8 GAIS 2002 160. 72 160. 6 160. 4 160. 2 CI=17 CI=0 160. 43 GAIS 2012 160. 68 CI=18 GAIS 2002 +RS(8 M) 160. 39 GAIS 2012 +RS(8 M)

Seemingly the same solutions Same structure “same family” Main RS 8 M algorithm: +

Seemingly the same solutions Same structure “same family” Main RS 8 M algorithm: + Tuning 1 × + Tuning 2 × RS 8 M --GAIS (2002) 23 + RS 1 M 23 + RS 8 M 23 GAIS (2012) 25 + RS 1 M 25 + RS 8 M 25 + PRS 25 + RS 8 M + PRS 24 GAIS 2002 × × 19 --0 0 17 17 17 RS 1 M RS 8 M × × 19 19 0 0 --18 18 18 GAIS 2012 × × 23 14 14 14 --1 1 RS 1 M RS 8 M × × 24 24 15 15 15 1 1 --0 0 1 1 × 23 14 14 14 1 0 0 --1 RS 8 M 22 16 13 13 1 1 ---

But why? • • Real cluster structure missing Clusters allocated like well optimized “grid”

But why? • • Real cluster structure missing Clusters allocated like well optimized “grid” Several grids results different allocation Overall clustering quality can still be the same

RS runs A 1 A 8 B 1 B 8 C 1 C 8

RS runs A 1 A 8 B 1 B 8 C 1 C 8 A 1 - 1 26 24 25 25 A 8 1 - 26 24 25 25 B 1 26 26 - 1 26 24 B 8 24 24 1 - 25 24 C 1 25 25 26 25 - 3 C 8 25 25 24 24 3 -

RS runs 1 M vs 8 M CI=26 MSE=0. 07% 160. 8 160. 6

RS runs 1 M vs 8 M CI=26 MSE=0. 07% 160. 8 160. 6 160. 4 CI=1 MSE=0. 09% 8 M: 161. 22 A 8 C 1 161. 48 161. 44 CI=1 CI=3 MSE=0. 15% MSE=0. 28% 161. 24 B 8 160. 99 C 8 CI=24 MSE=0. 01% 160. 2 MSE=0. 02% B 1 A 1 1 M: 161. 37 CI=26 MSE=0. 16%

Generalization

Generalization

Three alternatives 1. Prototype similarity Prototype must exist 2. Model similarity Derived from model

Three alternatives 1. Prototype similarity Prototype must exist 2. Model similarity Derived from model 3. Partition similarity

Partition similarity • Cluster similarity using Jaccard • Calculated from contigency table

Partition similarity • Cluster similarity using Jaccard • Calculated from contigency table

Gaussian mixture model 1 1 1 3 1 1 1 0 1 RI ARI

Gaussian mixture model 1 1 1 3 1 1 1 0 1 RI ARI MI NVD CH 0. 98 0. 84 3. 60 0. 94 0. 08 0. 16 CI=2 1 1 x Split-and-Merge EM Random Swap EM

Gaussian mixture model CI=2 CI=1 CI=3 CI=0 CI=1 CI=0

Gaussian mixture model CI=2 CI=1 CI=3 CI=0 CI=1 CI=0

Arbitrary-shape data

Arbitrary-shape data

KM GT 1 2 1 CI = 2 0 0 2 1

KM GT 1 2 1 CI = 2 0 0 2 1

1 GT KM 1 1 0 CI = 1 2 1 1

1 GT KM 1 1 0 CI = 1 2 1 1

SL GT 1 0 1 3 1 0 CI = 2

SL GT 1 0 1 3 1 0 CI = 2

GT SL 0 2 2 2 0 CI = 3 0

GT SL 0 2 2 2 0 CI = 3 0

Summary of experiments prototype similarity

Summary of experiments prototype similarity

Summary of experiments partition similarity

Summary of experiments partition similarity

Conclusions • Simple cluster level measure • Generalized to GMM and arbitrary-shaped data •

Conclusions • Simple cluster level measure • Generalized to GMM and arbitrary-shaped data • Value has clear interpretation: CI=0 Correct CI>0 Number of wrong clusters