3 Advanced Rules Models Etienne Sicard etienne sicardinsatlse

  • Slides: 27
Download presentation
3. Advanced Rules & Models Etienne Sicard etienne. sicard@insa-tlse. fr http: //intrage. insa-tlse. fr/~etienne

3. Advanced Rules & Models Etienne Sicard etienne. sicard@insa-tlse. fr http: //intrage. insa-tlse. fr/~etienne 2/27/2021 1

Summary ØNew design rules ØMOS models (Model 1, 3, bsim 4) ØInterconnect model ØCrosstalk

Summary ØNew design rules ØMOS models (Model 1, 3, bsim 4) ØInterconnect model ØCrosstalk model ØConclusion 2/27/2021 2

1. New design rules • By default salicide deposit • Low resistance N+, P+

1. New design rules • By default salicide deposit • Low resistance N+, P+ and poly surface Protect from Salicide • Removing salicide increases the resistance Default salicide deposit 2/27/2021 3

1. New design rules • Lateral Drain diffusion prevents hot carrier damage • Hot

1. New design rules • Lateral Drain diffusion prevents hot carrier damage • Hot carriers degrade Vt, Id. Sat (10% less than 1 year without LDD) LDD • ESD is improved without LDD 2/27/2021 4

1. New design rules • During fabrication, plasma etching charges metal lines • Charges

1. New design rules • During fabrication, plasma etching charges metal lines • Charges degrade MOS Vt, or damage oxide • Charges must be eliminated to the substrate Charges accumulated Gate damage Antenna ratio = Area (metal)/Area(gate) Solution: Add diodes 2/27/2021 Do It 5

2. MOS model Scoop Measured 10 x 10µm in 0. 35µm ST (hcmos 6)

2. MOS model Scoop Measured 10 x 10µm in 0. 35µm ST (hcmos 6) The MOS model 1 works fine in 0. 35µm (Shockley, 1950) 2/27/2021 6

2. MOS model 1 gives 150% error for L=0. 35µm (Shokley, 1950) 10 x

2. MOS model 1 gives 150% error for L=0. 35µm (Shokley, 1950) 10 x 0. 4 µm in 0. 35µm ST (hcmos 6) Sad, sad 150% No MOS level 1 in design rule manuals 2/27/2021 7

2. MOS model Measure simulation MOS level 3 includes short channel limitation effects MOS

2. MOS model Measure simulation MOS level 3 includes short channel limitation effects MOS 3 is considered obsolete starting 0. 5µm, but is still in used for first-order estimations 2/27/2021 8

2. MOS model ® BSIM 3 v 3 Berkeley ® New BSIM 4 MOS

2. MOS model ® BSIM 3 v 3 Berkeley ® New BSIM 4 MOS Model 9 « MM 9 » (ST, Philips) Soon stopped 2/27/2021 20 Basic parameters 60 secondary parameters 120 fitting parameters 9

2. MOS model BSIM 4 threshold model Berkeley Vth (V) Short channel effects 2/27/2021

2. MOS model BSIM 4 threshold model Berkeley Vth (V) Short channel effects 2/27/2021 Channel length (µm) 10

2. MOS model BSIM 4 threshold model Berkeley Ids (Log) Vgs (V) Vds (V)

2. MOS model BSIM 4 threshold model Berkeley Ids (Log) Vgs (V) Vds (V) 2/27/2021 11

2. MOS model Poor fit Width (µm) 100. 0 Reference Output pad 10. 0

2. MOS model Poor fit Width (µm) 100. 0 Reference Output pad 10. 0 Good fit Length (µm) 1. 0 0. 0 2/27/2021 2. 5 5. 0 7. 5 10 The MOS model is reliable within its optimized range 12

2. MOS model • Around 200 parameters • Model gourous 2/27/2021 • Model is

2. MOS model • Around 200 parameters • Model gourous 2/27/2021 • Model is becoming a service Achieve good fit with static measurements using a wide set of tricks and internal arrangements 13

2. MOS model Layout W=100µm L=0. 25µm in a square area? 2/27/2021 14

2. MOS model Layout W=100µm L=0. 25µm in a square area? 2/27/2021 14

2. MOS model Shielded MOS, for mixed signal applications VSS 2 D view 2/27/2021

2. MOS model Shielded MOS, for mixed signal applications VSS 2 D view 2/27/2021 3 D view 15

3. Interconnect Model C (F/m)= e 0 er w/h e 0=8. 85 e-12 F/m

3. Interconnect Model C (F/m)= e 0 er w/h e 0=8. 85 e-12 F/m Capacitance w w=1µm e=1µm Capacitance(a. F/µm) e 1000 h Total 100 Plane 10 0. 01 0. 1 1. 0 Fringing effects are comparable to area 2/27/2021 16

3. Interconnect Model Formulation in CAD tools based on 2 D solvers Sakurai formulas

3. Interconnect Model Formulation in CAD tools based on 2 D solvers Sakurai formulas Delorme formulas Page C 11= 0. r *(1, 13*w/h+1. 443(w/h)^0, 11+1. 475 (t/h)^0. 425) 2/27/2021 17

3. Interconnect Model Resistance 2/27/2021 18

3. Interconnect Model Resistance 2/27/2021 18

3. Interconnect Model Simple line model Very short interconnect Medium interconnect Long interconnect 2/27/2021

3. Interconnect Model Simple line model Very short interconnect Medium interconnect Long interconnect 2/27/2021 No precise info in DRM, still research 19

3. Interconnect Model Measurement/Simulations 5 mm Voltage Near end Time (ns) Far end CRC

3. Interconnect Model Measurement/Simulations 5 mm Voltage Near end Time (ns) Far end CRC model fits well in 0. 25µm (hcmos 7) 2/27/2021 20

3. Interconnect Model Volt 5 Volt 3 0. 35 µm 0. 7 µm 4

3. Interconnect Model Volt 5 Volt 3 0. 35 µm 0. 7 µm 4 Volt 2 1. 5 2 1 3 2 0. 5 1 Al 1 1 2 3 mm 1 mm 2/27/2021 0 0 3 ns 1 mm Cu 0 Al 0 0. 18µm 0. 5 1. 0 0. 25 0. 75 1. 0 ns 1. 5 ns Repeaters help 3 Rx 3 C=9 RC (680 ps) to propagate signals at long distance 3 RC+2 tgate (380 ps) 1 mm 21

3. Interconnect Model Technology 0. 70µm Gate delay 0. 50µm Aluminium 0. 35µm 0.

3. Interconnect Model Technology 0. 70µm Gate delay 0. 50µm Aluminium 0. 35µm 0. 25µm 0. 18µm Copper 0. 12µm 0 500 1000 1500 Gate delay (ps) 2/27/2021 22

4. Crosstalk Effects Rising importance of coupling capacitance 0. 7 µm 0. 18 µm

4. Crosstalk Effects Rising importance of coupling capacitance 0. 7 µm 0. 18 µm New parameters in DRM 2/27/2021 23

4. Crosstalk Effects Crosstak (V) Critical routing length 0. 25µm 0. 18µm 4000µm 2200µm

4. Crosstalk Effects Crosstak (V) Critical routing length 0. 25µm 0. 18µm 4000µm 2200µm 2/27/2021 Length (µm) 24

4. Crosstalk Effects Coupled line model Short coupled interconnects Long coupled interconnects Used for

4. Crosstalk Effects Coupled line model Short coupled interconnects Long coupled interconnects Used for investigating crosstalk 2/27/2021 25

4. Crosstalk Effects Alu Si. O 2 Generation 0. 70µm Probable Fault 0. 50µm

4. Crosstalk Effects Alu Si. O 2 Generation 0. 70µm Probable Fault 0. 50µm Fault 0. 35µm 0. 25µm Cu Low K 0. 18µm Noise/VDD (%) 0. 12µm 0 25% 50% 75% 100% Crosstalk is a major signal integrity challenge 2/27/2021 26

Conclusion • Specific technological options described • Complex MOS models are mandatory • BSIM

Conclusion • Specific technological options described • Complex MOS models are mandatory • BSIM 3 v 3, soon BSIM 4 • Interconnect is the main delay limiting factor • A C/R/C model is accurate for simulating signal transport • Crosstalk is a major signal integrity challenge 2/27/2021 27