De Morgans Laws 2 9 CS708 1 De
































































































- Slides: 96
De Morgan’s Laws – 2 - 9 CS-708 1
De Morgan’s Laws – 2 - 9 a CS-708 2
Proof – 2 - 16 CS-708 3
Proof – 2 - 16 d CS-708 4
Application – 2 - 10 CS-708 5
Laws of Logic – 2 - 25 CS-708 6
Laws of Logic – 2 - 25 a CS-708 7
Laws of Logic – 2 - 25 b CS-708 8
Laws of Logic – 2 - 25 c CS-708 9
Laws of Logic – 2 - 25 d CS-708 10
Application - 1 CS-708 11
Example - 2 CS-708 12
Exercise – 5 CS-708 13
Conditional Statements - 6 CS-708 14
Conditional Statements – 6 a CS-708 15
Truth Table for p q - 8 CS-708 16
Conditional Statements or Implications -7 CS-708 17
Conditional Statements OR Implications – 7 a CS-708 18
Example – 9 CS-708 19
Alternative Ways of Expressing Implications – 10 CS-708 20
Alternative Ways of Expressing Implications – 10 a CS-708 21
Exercise - 11 CS-708 22
Exercise – 11 a CS-708 23
Translating English Sentences to Symbols - 12 CS-708 24
Translating English Sentences to Symbols – 12 a CS-708 25
Translating English Sentences to Symbols – 12 b CS-708 26
Translating English Sentences to Symbols – (3 – 12 c) CS-708 27
Translating Symbolic Propositions to English – 13 CS-708 28
Translating Symbolic Propositions to English – 13 a CS-708 29
Translating Symbolic Propositions to English – 13 b CS-708 30
Hierarchy of Operations for Logical Connectives - 14 CS-708 31
Truth Table for p v ~ q ~ p – 20 a CS-708 32
Truth Table for p v ~ q ~ p – 20 b CS-708 33
(p q) (~p r) - 21 CS-708 34
(p q) (~p r) – 21 a CS-708 35
(p q) (~p r) – 21 c CS-708 36
p q ≡ ~q ~p- 22 CS-708 38
Implication Law – 23 CS-708 39
Negation of a Conditional Statement 15 CS-708 40
Examples – (3 - 16) CS-708 41
Example – 16 a CS-708 42
Inverse of a Conditional Statement - 24 CS-708 43
p q is not equivalent to ~p ~q – (3 – 25) CS-708 44
Writing Inverse – 17 CS-708 45
Writing Inverse – 17 a CS-708 46
Converse of a Conditional Statement 26 CS-708 47
Converse of a conditional Statement – (3 – 27) CS-708 48
Writing Converse – 18 CS-708 49
Writing Converse – 18 a CS-708 50
Contrapositive of a Conditional Statement– 28 CS-708 51
Writing Contrapositivity – 19 CS-708 52
Writing Contrapositivity – 19 a CS-708 53
Biconditional - 2 CS-708 54
Truth Table for p <--> - 3 CS-708 55
Examples – 4 a CS-708 56
Examples – 4 b CS-708 57
q = (p q) (q p) – 5 a v p CS-708 58
q = (p q) (q p) – 5 b v p CS-708 59
q = (p q) (q p) – 5 c v p – 5 c CS-708 60
q = (p q) (q p) – 5 v p CS-708 61
Rephrasing Biconditional - 6 CS-708 62
Examples – 9 CS-708 63
Examples – 9 a CS-708 64
Examples – 9 b CS-708 65
Examples – 9 c CS-708 66
Truth table for (p q) 7 a CS-708 (~q ~p) – 67
Truth table for (p q) 7 b CS-708 (~q ~p) – 68
Truth table for (p q) 7 c CS-708 (~q ~p) – 69
Truth table for (p q) 7 CS-708 (~q ~p) – 70
(p q) CS-708 (r q) – 8 72
(p q) CS-708 (r q) – 8 b 73
(p q) CS-708 (r q) – 8 c 74
(p q) CS-708 (r q) – 8 d 75
(p q) CS-708 (r q) – 8 76
p ~r q v r – 10 CS-708 77 v
p ~r q v r – 10 b CS-708 78 v
p ~r q v r – 10 c CS-708 79 v
p ~r q v r – 10 d CS-708 80 v
p ~r q v r – 10 e CS-708 81 v
Show that ~p q ≡ p ~q – 11 a CS-708 82
Show that ~p q ≡ p ~q – 11 b CS-708 83
Show that ~p q ≡ p ~q – 11 CS-708 84
Show that ~p q ≡ p ~q – 11 c CS-708 85
Show that ~(p + q) ≡ p q – 12 b CS-708 86
Show That - 1(4 - 2 c) CS-708 87
Show that ~(p + q) ≡ p q – 12 d CS-708 88
Show that ~(p + q) ≡ p q – 12 CS-708 89
Laws of Logic – 14 CS-708 90
Laws of Logic - 14 a CS-708 91
Application – 15 CS-708 92
Application – 15 b CS-708 93
Exercise - 17 CS-708 94
Exercise – 17 a CS-708 95
Exercise – 17 b CS-708 96