PHOTONS IN CHEMISTRY OUT PHOTONS IN CHEMISTRY OUT

  • Slides: 31
Download presentation
PHOTONS IN CHEMISTRY OUT

PHOTONS IN CHEMISTRY OUT

PHOTONS IN CHEMISTRY OUT WHY BOTHER?

PHOTONS IN CHEMISTRY OUT WHY BOTHER?

1. Remote action

1. Remote action

1. Remote action

1. Remote action

Light has: • Intensity • Color (wavelength) • Polarization

Light has: • Intensity • Color (wavelength) • Polarization

E=hν

E=hν

Light has: • Intensity • Color (wavelength) = ENERGY • Polarization

Light has: • Intensity • Color (wavelength) = ENERGY • Polarization

1. Remote action 2. Energetics

1. Remote action 2. Energetics

(wavelength) x (frequency) = speed [m/s] λν = c [108 m/s]

(wavelength) x (frequency) = speed [m/s] λν = c [108 m/s]

E=hν

E=hν

~ 450 -750 nm Take 500 nm

~ 450 -750 nm Take 500 nm

Boltzman

Boltzman

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10,

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10, 000 20, 000 50, 000 n 2/n 1 3 x 10 -42 7 x 10 -32 3. 4 x 10 -13 6 x 10 -7 3 x 10 -3 1% 5. 7 % 24 % 56 %

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10,

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10, 000 20, 000 50, 000 n 2/n 1 3 x 10 -42 7 x 10 -32 3. 4 x 10 -13 6 x 10 -7 3 x 10 -3 1% 5. 7 % 24 % 56 %

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10,

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10, 000 20, 000 50, 000 n 2/n 1 3 x 10 -42 7 x 10 -32 3. 4 x 10 -13 6 x 10 -7 3 x 10 -3 1% 5. 7 % 24 % 56 %

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10,

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10, 000 20, 000 50, 000 n 2/n 1 3 x 10 -42 7 x 10 -32 3. 4 x 10 -13 6 x 10 -7 3 x 10 -3 1% 5. 7 % 24 % 56 %

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10,

Boltzman T [o. K] 300 400 1000 2, 000 5, 000 6, 400 10, 000 20, 000 50, 000 n 2/n 1 3 x 10 -42 7 x 10 -32 3. 4 x 10 -13 6 x 10 -7 3 x 10 -3 1% 5. 7 % 24 % 56 %

Grotthuss-Draper law: Only the light absorbed in a molecule can produce photochemical Change in

Grotthuss-Draper law: Only the light absorbed in a molecule can produce photochemical Change in the molecule (1871 and 1841) Stark - Einstein: If a species absorbs radiation, then one particle is excited for each quantum of radiation absorbed

Primary Φ ≤ 1 Sum of all primary Φ’s =1 QUANTUM YIELD: Φ =

Primary Φ ≤ 1 Sum of all primary Φ’s =1 QUANTUM YIELD: Φ = The number of molecules of reactant consumed for each quantum of radiation absorbed Stark - Einstein: If a species absorbs radiation, then one particle is excited for each quantum of radiation absorbed