Solar Neutrinos in SuperKamiokande ICHEP 2014 Valencia July

  • Slides: 36
Download presentation
Solar Neutrinos in Super-Kamiokande ICHEP 2014 @Valencia July 4 2014 Hiroyuki Sekiya ICRR, University

Solar Neutrinos in Super-Kamiokande ICHEP 2014 @Valencia July 4 2014 Hiroyuki Sekiya ICRR, University of Tokyo for the Super-K Collaboration Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 1

Super-Kamiokande 50 kton pure water Cherenkov detector 1 km (2. 7 km w. e)

Super-Kamiokande 50 kton pure water Cherenkov detector 1 km (2. 7 km w. e) underground in Kamioka 11129 50 cm PMTs in Inner Detector 1885 20 cm PMTs in Outer Detector Physics targets of Super-Kamiokande r ola S SN c i el ν ν R ~3. 5 Me. V ~20 Hiroyuki Sekiya ~100 ay n o t Pro c de WI s P M Atmospheric ν ~1 Ge. V ICHEP 2014 Jul. 4 2014 @Valencia, Spain Te. V 2

Super-K n + e- Solar neutrinos observation Hiroyuki Sekiya ne ICHEP 2014 Jul. 4

Super-K n + e- Solar neutrinos observation Hiroyuki Sekiya ne ICHEP 2014 Jul. 4 2014 @Valencia, Spain 3

The results: Solar global fit This SK update and other latest results are combined.

The results: Solar global fit This SK update and other latest results are combined. Combined solar fit with Kam. LAND Without reactor θ 13 constraint preliminary sin 2θ 13=0. 0242± 0. 0026 Solar Kam. LAND Solar+Kam. LAND Reactor ~2σ tension in Δm 221 between solar and Kam. LAND Hiroyuki Sekiya Non-zero q 13 at 2 s from solar+Kam. LAND Good agreement with sin 2θ 13=0. 0221± 0. 0012 Daya Bay, RENO & DC (Neutrino 2014) ICHEP 2014 Jul. 4 2014 @Valencia, Spain 4

Motivation Search for the direct signals of the MSW effect Solar matter effect Earth

Motivation Search for the direct signals of the MSW effect Solar matter effect Earth matter effect Energy spectrum distortion Flux day-night asymmetry Neutrino survival probability JHEP 0311: 004(2003) Vacuum oscillation dominant Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 up -tu Solar sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 Hiroyuki Sekiya Regenerate ne by earth matter effect rn ! Matter oscillation dominant ICHEP 2014 Jul. 4 2014 @Valencia, Spain 5

Improvements in SK-IV Reduced 222 Rn BG 4. 0 -4. 5 Me. V bin

Improvements in SK-IV Reduced 222 Rn BG 4. 0 -4. 5 Me. V bin SK-III New analysis in low energy bins Remaining BG-electrons from 214 Bi should have more multiple-scatterings than signal-electrons have: MSG SK-IV 3. 5 -4. 0 Me. V MSG < 0. 35<MSG<0. 45<MSG 4. 0 -4. 5 Me. V l Reduced systematic error 1. 7% for flux cf. SK-I: 3. 2% SK-III: 2. 1% Achieved 3. 5 Me. V(kin. ) energy threshold 8. 6 s signal is observed with MSG Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 6

8 B solar n in SK-I+II+IV 8 B n signals preliminary FSK(8 B) =2.

8 B solar n in SK-I+II+IV 8 B n signals preliminary FSK(8 B) =2. 344± 0. 034 x 106 cm-1 s-1 ~70 k solar neutrino events FSK+SNO(8 B) +0. 17 =5. 30 -0. 11 preliminary x 106 cm-1 s-1 n could be the BG for DM search through NC coherent scattering. 8 B Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 7

Data/MC(unoscillated) Recoil electron spectra preliminary Kinetic energy (Me. V) Hiroyuki Sekiya ICHEP 2014 Jul.

Data/MC(unoscillated) Recoil electron spectra preliminary Kinetic energy (Me. V) Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 8

N. B. All SK phase are combined without regard to energy resolution or systematics

N. B. All SK phase are combined without regard to energy resolution or systematics in this figure SK-I+II+IV spectrum Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 Solar sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 (total # of bins of SKI - IV is 83) χ2 Solar+Kam. LAND 70. 13 Solar 68. 14 quadratic fit 67. 67 exponential fit 66. 54 Neutrino energy spectrum is convoluted in the electron recoil spectrum. For de-convolution, generic functions are used as a survival probability; f 8 B=5. 25 x 106/(cm 2∙sec) fhep=7. 88 x 103/(cm 2∙sec) SK recoil electron spectrum constrain the fit parameters (ci, ei) of the function and the allowed Pee(En) is derived using the allowed (ci, ei). Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 9

Allowed Pee(En) for SK preliminary Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50

Allowed Pee(En) for SK preliminary Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 SK Solar sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 ✓MSW (solar+Kam. LAND) is consistent at ~1. 6σ ✓MSW (solar) fits better (at ~0. 7σ) Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 10

Allowed Pee(En) for SK+SNO preliminary Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50

Allowed Pee(En) for SK+SNO preliminary Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 SNO SK SK+SNO Solar sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 ✓SK and SNO are complementary for the shape constraint ✓MSW is consistent at 1σ Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 11

Global view of Pee(En) preliminary all solar (pp) Borexino (pep) Borexino (8 B) Borexino

Global view of Pee(En) preliminary all solar (pp) Borexino (pep) Borexino (8 B) Borexino (7 Be) SK+SNO Homestake +SK+SNO (CNO) Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 12

Flux zenith angle distribution SK-I - IV combined (Eth=4. 5 Me. V for SK-I,

Flux zenith angle distribution SK-I - IV combined (Eth=4. 5 Me. V for SK-I, III, IV 6. 5 Me. V for SK-II) Solar best fit sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 Solar+Kam. LAND θz sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 Earth Sun preliminary Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 13

Day/Night asymmetry amplitude preliminary Energy-dependence of the variation Rate/Rateaverage expected Δm 221=4. 84 x

Day/Night asymmetry amplitude preliminary Energy-dependence of the variation Rate/Rateaverage expected Δm 221=4. 84 x 10 -5 e. V 2 sin 2θ 12=0. 311 sin 2θ 13=0. 025 Fitted asymmetry amplitude Δm 221=4. 84 x 10 -5 e. V 2 Δm 221=7. 50 x 10 -5 e. V 2 SK-I -2. 0± 1. 8± 1. 0% -1. 9± 1. 7± 1. 0% SK-II -4. 4± 3. 8± 1. 0% -4. 4± 3. 6± 1. 0% SK-III -4. 2± 2. 7± 0. 7% -3. 8± 2. 6± 0. 7% SK-IV -3. 6± 1. 6± 0. 6% -3. 3± 1. 5± 0. 6% combined -3. 3± 1. 0± 0. 5% -3. 1± 1. 0± 0. 5% non-zero significance 3. 0σ 2. 8σ Hiroyuki Sekiya First observation of day/night asymmetry at 3 s significance level ICHEP 2014 Jul. 4 2014 @Valencia, Spain 14

Δm 221 dependence sin 2θ 12=0. 311, sin 2θ 13=0. 025 preliminary 1σ Solar

Δm 221 dependence sin 2θ 12=0. 311, sin 2θ 13=0. 025 preliminary 1σ Solar 3. 0σ 1σ Kam. LAND 2. 9σ 2. 8σ expected SK-I, III, IV best fit Solar region differ from zero by 2. 9~3. 0σ agree with expect by 1. 0σ Kam. LAND region differ from zero by more than 2. 8σ agree with expect by 1. 3σ Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 15

Summary SK has observed ~70000 solar n interactions, by far the largest sample of

Summary SK has observed ~70000 solar n interactions, by far the largest sample of solar neutrino events in the world. SK data provide the first indication (at 2. 8~3. 0 s) of terrestrial matter effects on 8 B solar n oscillation. SK gives the world’s strongest constraints on the shape of the survival probability Pee(Eν) in the transition region between vacuum oscillations and MSW resonance. ◦ SK spectrum results are consistent with MSW up-turn prediction within ~1 s. SK measurements strongly constrain neutrino oscillation parameters: ◦ SK gives world’s best constraint on Δm 212 using neutrinos. ◦ There is a 2 s tension between SK’s neutrino and Kam. LAND’s antineutrino measurement of Δm 212. Last month SK started taking data at ~2. 5 Me. V at ~100% trigger efficiency. Stay tuned for very low energy SK neutrino. Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 16

Extra slides Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 17

Extra slides Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 17

Full summary SK has observed ~70000 solar neutrino interactions in ~4500 days (1. 5

Full summary SK has observed ~70000 solar neutrino interactions in ~4500 days (1. 5 solar cycles), by far the largest sample of solar neutrino events in the world. SK data provide the first indication (at 2. 8~3. 0 sigma) of terrestrial matter effects on 8 B solar neutrino oscillation. This is the first observation using a single detector and identical neutrino beams that matter affects neutrino oscillations. SK has successfully lowered the analysis threshold to ~3. 5 Me. V kinetic recoil electron energy. SK gives the world’s strongest constraints on the shape of the survival probability Pee(Eν) in the transition region between vacuum oscillations and MSW resonance. SK spectrum results slightly disfavor the MSW resonance curves, but are consistent with MSW prediction within 1 -1. 7 sigma. SK measurements strongly constrain neutrino oscillation parameters: SK uniquely selects the Large Mixing Angle MSW region by >3 sigma, gives world’s best constraint on solar Δm 2 using neutrinos, and significantly contributes to the measurement of the solar angle. There is a 2 sigma tension between SK’s neutrino and Kam. LAND’s anti-neutrino measurement of the solar Δm 2. Last month SK started taking data at ~2. 5 Me. V at ~100% trigger efficiency. Stay tuned for very low energy SK solar neutrino Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 18

Wide-band Intelligent Trigger Reconstruction and Reduction just after Front-end 100% trigger efficiency above 2.

Wide-band Intelligent Trigger Reconstruction and Reduction just after Front-end 100% trigger efficiency above 2. 5 Me. V(kin. ) Just started Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 19

Oscillation parameter Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 20

Oscillation parameter Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 20

Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 21

Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 21

Improvements in SK-IV Reduced BG Event rate becomes low and stable in SK-IV 4.

Improvements in SK-IV Reduced BG Event rate becomes low and stable in SK-IV 4. 0 -4. 5 Me. V bin SK-III l SK-IV Reduced systematic error 1. 7% for flux cf. SK-I: 3. 2% SK-III: 2. 1% achieved 3. 5 Me. V(kin. ) energy threshold 7. 5 s level signal is observed at 3. 5 Me. V bin Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 22

significance of the signal The MSG non-zero signal significance is 8. 6 sigma (2.

significance of the signal The MSG non-zero signal significance is 8. 6 sigma (2. 4129/0. 2811) 3. 5 - 4. 0 Me. V Data/SSM=0. 4596+0. 0546 -0. 0535 Flux=2. 4129+0. 2866 -0. 2811 Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 23

SK+SNO 8 B total flux For each oscillation parameter set there is a minimum

SK+SNO 8 B total flux For each oscillation parameter set there is a minimum chi 2 and a 8 B error term describing the parabolic increase of the chi 2 with deviations from the best chi 2. The reduced chi 2 vs. 8 B flux is below. The jump is due to the relatively coarse grid in theta 12. 5. 30+0. 17 -0. 11 x 10^6/(cm 2 sec), which is a (+3%, -2%) error on the total 8 B for SK+SNO compared to the 1. 5% error of SK's ES flux by itself. Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 24

Systematic errors Total 1. 7 % Hiroyuki Sekiya Source SK-IV flux (3. 5 -19.

Systematic errors Total 1. 7 % Hiroyuki Sekiya Source SK-IV flux (3. 5 -19. 5 Me. V) SK-III flux (4. 5 -19. 5 Me. V) energy scale +1. 14, -1. 16% ± 1. 4% energy resolution +0. 14, -0. 08% ± 0. 2% B 8 spectrum +0. 33, -0. 37% ± 0. 2% trigger efficiency ± 0. 1% ± 0. 5% angular resolution +0. 32, -0. 25% ± 0. 67% vertex shift ± 0. 18% ± 0. 54% BG event cut ± 0. 36% ± 0. 4% hit pattern cut ± 0. 27% ± 0. 25% another vertex cut removed ± 0. 45% spallation cut ± 0. 2% gamma cut ± 0. 26% ± 0. 25% cluster hit cut +0. 45, -0. 44% ± 0. 5% BG shape ± 0. 1% signal extraction ± 0. 7% cross section ± 0. 5% ICHEP 2014 Jul. 4 2014 @Valencia, Spain 25

8 B 8 B solar n in SK-I+II+IV n signals Hiroyuki Sekiya ICHEP 2014

8 B 8 B solar n in SK-I+II+IV n signals Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 26

Data set for global solar analysis The most up-to-date data are used SK: ◦

Data set for global solar analysis The most up-to-date data are used SK: ◦ ◦ SK-I 1496 days, spectrum 4. 5 -19. 5 Me. V(kin. )+D/N: Ekin>4. 5 Me. V SK-II 791 days, spectrum 6. 5 -19. 5 Me. V(kin. )+D/N: Ekin>7. 0 Me. V SK-III 548 days, spectrum 4. 0 -19. 5 Me. V(kin. )+D/N: Ekin>4. 5 Me. V SK-IV 1669 days, spectrum 3. 5 -19. 5 Me. V(kin. )+D/N: Ekin>4. 5 Me. V SNO: ◦ Parameterized analysis (c 0, c 1, c 2, a 0, a 1) of all SNO phased. (PRC 88, 025501 (2013 )) ◦ Same method is applied to both SK and SNO with a 0 and a 1 to LMA expectation Radiochemical: Cl, Ga ◦ Ga rate: 66. 1± 3. 1 SNU (All Ga global) (PRC 80, 015807 (2009)) ◦ Cl rate: 2. 56± 0. 23 SNU(Astrophys. J. 496, 505 (1998) ) Borexino: Latest 7 Be flux (PRL 107, 141302 (2011)) Kam. LAND reactor : Latest (3 -flavor) analysis (PRD 88, 3, 033001 (2013)) 8 B spectrum: Winter 2006 (PRC 73, 025503 (2006)) 8 B and hep flux f 8 B=5. 25 x 106/(cm 2∙sec) fhep=7. 88 x 103/(cm 2∙sec) Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 27

Day/Night (sin 2θ 12=0. 311, sin 2θ 13=0. 025) Amplitude fit Straight calc. Δm

Day/Night (sin 2θ 12=0. 311, sin 2θ 13=0. 025) Amplitude fit Straight calc. Δm 221=4. 84 x 10 -5 e. V 2 Δm 221=7. 50 x 10 -5 e. V 2 (D-N)/((D+N)/2) SK-I -2. 0± 1. 8± 1. 0% -1. 9± 1. 7± 1. 0% -2. 1± 2. 0± 1. 3% SK-II -4. 4± 3. 8± 1. 0% -4. 4± 3. 6± 1. 0% -5. 5± 4. 2± 3. 7% SK-III -4. 2± 2. 7± 0. 7% -3. 8± 2. 6± 0. 7% -5. 9± 3. 2± 1. 3% SK-IV -3. 6± 1. 6± 0. 6% -3. 3± 1. 5± 0. 6% -4. 9± 1. 8± 1. 4% combined -3. 3± 1. 0± 0. 5% -3. 1± 1. 0± 0. 5% -4. 1± 1. 2± 0. 8% non-zero significance 3. 0σ 2. 8σ Rate/Rateaverage expected time variation as a function of cosθz 2. 8σ preliminary α : day-night asym. scaling factor Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 28

exponential parameterization Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5

exponential parameterization Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 Solar sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 ✓SK spectrum, red : exponential, green : quadratic preliminary Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 29

N. B. All SK phase are combined without regard to energy resolution or systematics

N. B. All SK phase are combined without regard to energy resolution or systematics in this figure SK-I+II+IV spectrum Solar+Kam. LAND sin 2θ 12=0. 308 Δm 221=7. 50 x 10 -5 e. V 2 Solar sin 2θ 12=0. 311 Δm 221=4. 85 x 10 -5 e. V 2 (total # of bins of SKI - IV is 83) χ2 Solar+Kam. LAND 70. 13 Solar 68. 14 quadratic fit 67. 67 Neutrino energy spectrum is convoluted in the electron recoil spectrum. For de-convolution, a generic quadratic function is used as a survival probability; f 8 B=5. 25 x 106/(cm 2∙sec) fhep=7. 88 x 103/(cm 2∙sec) SK recoil electron spectrum constrain the fit parameters (ci) of the function and the allowed Pee(En) is derived using the allowed (ci). Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 30

Multiple scattering goodness Induced multiple scattering goodness(MSG) in SK-IV analysis. Although the 214 Bi

Multiple scattering goodness Induced multiple scattering goodness(MSG) in SK-IV analysis. Although the 214 Bi decay-electrons (majority of low energy BG) fluctuate up above 5. 0 Me. V, they truly have energy less than 3. 3 Me. V and should have more multiple scattering than true 5. 0 Me. V electrons. Hiroyuki Sekiya 3. 5 -4. 0 Me. V MSG < 0. 35 4. 0 -4. 5 Me. V MSG > 0. 45 MSG < 0. 35 ICHEP 2014 Jul. 4 2014 @Valencia, Spain 35

MSG For each PMT hit pair, the vectors to the Chrenkov ring cross points

MSG For each PMT hit pair, the vectors to the Chrenkov ring cross points are the direction candidates MSG = vector sum of the candidates/ scalar sum of the candidates MSG of multiple scattering events should be small Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 32

Comparison with others SNO Kam. LAND Super-K BOREXINO Super-K spectrum is the most precise!

Comparison with others SNO Kam. LAND Super-K BOREXINO Super-K spectrum is the most precise! Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 33

Solar Neutrinos Pee p+p➝d+e++ν e (99. 77%) p+e-+p➝d+νe (0. 23%) all solar BOREXINO pp

Solar Neutrinos Pee p+p➝d+e++ν e (99. 77%) p+e-+p➝d+νe (0. 23%) all solar BOREXINO pp d+p➝ 3 He+γ BOREXINO pep MSW (solar&KL) MSW (solar) SK & SNO 3Ηe+α➝ 7 Be+γ 15. 08% 3Ηe+3Ηe➝α+2 p 84. 92% 3 He+p➝α+e++ν Cl e 7 Be+e-➝ 7 Li+ν e 99. 9% 7 Be+p➝ 8 B+γ 0. 1% 8 B 7 Be BOREXINO Hep 8 B+➝ 8 Be*+e++ν e 7 Li+p➝α+α; 8 Be*➝α+α Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain

Super-K water transparency @ Cherenkov light wavelength Measured by decay e-e+ from cosmic m-m+

Super-K water transparency @ Cherenkov light wavelength Measured by decay e-e+ from cosmic m-m+ SK-III SK-IV Started automatic temperature control anti-correlated with Supply water temperature Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 35

Convection suppression in SK Very precisely temperature-controlled (± 0. 01 o. C) water is

Convection suppression in SK Very precisely temperature-controlled (± 0. 01 o. C) water is supplied to the bottom. Return to Water system 3. 5 Me. V-4. 5 Me. V Event distribution Temperature gradation in Z The difference is only 0. 2 o. C Purified Water supply r 2 Hiroyuki Sekiya ICHEP 2014 Jul. 4 2014 @Valencia, Spain 36