Optical Networking CS 294 3 252002 John Strand

  • Slides: 42
Download presentation
Optical Networking CS 294 -3 2/5/2002 John Strand AT&T Optical Networks Research Dept. jls@research.

Optical Networking CS 294 -3 2/5/2002 John Strand AT&T Optical Networks Research Dept. jls@research. att. com U. of California - Berkeley - EECS Dept. jls@photonics. eecs. berkeley. edu The Views Expressed In This Talk Are The Author’s. They Do Not Necessarily Represent The Views Of AT&T Or Any Other Corporation Or Individual. John Strand 1/18/2002 1

SONET Rates Level Optical Designation Bit Rate (Mb/s) STS-1 OC-1 51. 840 STS-3 OC-3

SONET Rates Level Optical Designation Bit Rate (Mb/s) STS-1 OC-1 51. 840 STS-3 OC-3 155. 520 STS-12 OC-12 622. 080 STS-48 OC-48 2, 488. 320 STS-192 OC-192 9, 953. 280 STS-768 OC-768 39, 813. 120 STS OC = SYNCHRONOUS TRANSPORT SIGNAL = OPTICAL CARRIER (“. . result of a direct optical converions of the STS after synchronous scrambling” - ANSI) EC (Not Shown) = ELECTRICAL CARRIER John Strand 1/18/2002 2

Basic Service Types Central Office CPE PSTN "POTS" PBX Switch • ~ 100 Intercity

Basic Service Types Central Office CPE PSTN "POTS" PBX Switch • ~ 100 Intercity Switches* Transport Network Private Line (PL) • Shared By Many Services • ~10 x As Many Offices* POTS: Plain Old Telephone Service * ATT Network John Strand 1/18/2002 3

Entering The Transport Network 64 kb/s POTS & VG PL 1 O O 24

Entering The Transport Network 64 kb/s POTS & VG PL 1 O O 24 O O 1. 5 Mb/s M U X 1. 5 Mb/s PL 45 - 2500 Mb/s PL [1 Gb Ethernet] 45 - 622 Mb/s M U X 2. 5 - 10 Gb/s M U X W D M Backbone Fiber Network 2500 - 10, 000 Mb/s PL, 10 Gb WAN Ethernet * 10 Gb WAN Ethernet • SONET Framed - 9. 953 Gb/s • Asynchronous POTS: "Plain Old Telephone Service" VG: Voice Grade PL: Private Line John Strand 1/18/2002 4

Fiber Structure Pure Glass Core Lightpack Cable Design 8. 3 micron* Glass Cladding Protects

Fiber Structure Pure Glass Core Lightpack Cable Design 8. 3 micron* Glass Cladding Protects “core” Serves as a “Light guide” 125 micron Inner Polymer Coating Outer Polymer Coating Protection Layers 250 micron Single Fiber Typical Loss: 0. 2 – 0. 25 d. B/km Plus Connector Loss * Single Mode Fiber; Multi-Mode Has A 50 Micron Core John Strand 1/18/2002 5

Service Routing Service Layer (e. g. , POTS or PL) Transport Layer John Strand

Service Routing Service Layer (e. g. , POTS or PL) Transport Layer John Strand 1/18/2002 6

Optical Amplifier/WDM Revolution Frequency-registered transmitters l 1 Receivers R All-Optical Amplification Of Multi-Wavelength Signal!!!

Optical Amplifier/WDM Revolution Frequency-registered transmitters l 1 Receivers R All-Optical Amplification Of Multi-Wavelength Signal!!! R l 2 l 3 WDM Mux OA OA WDM De. Mux R 40 - 120 km (80 km typically) l. N Up to 10, 000 km (600 km in 2001 basic commercial products) WDM: Wavelength Division Multiplex OA: Optical Amplifier R John Strand 1/18/2002 7

Single Fiber Capacity Moore's Law Bandwidth Capacity = (Bandwidth/ l) * (Bits / l)

Single Fiber Capacity Moore's Law Bandwidth Capacity = (Bandwidth/ l) * (Bits / l) Source: K. Coffman & A. Odlyzko, “Internet Growth: Is There A Moore’s Law For Data Traffic? ” (research. att. com/~amo) John Strand 1/18/2002 8

Transport Layer Model Characteristic Technologies PL Circuit/Packet Switching Router Voice Switch DS 3 or

Transport Layer Model Characteristic Technologies PL Circuit/Packet Switching Router Voice Switch DS 3 or STS-N (<= 622 Mb/S) PL Digital Transmission (SONET) STS-48 or 192 (2. 5 - 10 Gb/Sec) PL Digital Cross-Connect (DCS) Add-Drop Multiplexer (ADM) Single "wavelengths" Optical Layer Multi-Wavelength Division Multiplexer (WDM) Optical Cross-Connect (OXC) Multi-wavelength bundles (<= 400 Gb/s) Media Layer Fiber John Strand 1/18/2002 9

Opaque Wavelength Path Crossconnect Optical transport system (1. 55 mm) Standard cross-office optics (1.

Opaque Wavelength Path Crossconnect Optical transport system (1. 55 mm) Standard cross-office optics (1. 3 mm) Optical transport system (1. 55 mm) = node-bypass . . . (Optical or Electronic Transparency Interior) Fibers Out . . . Wavelength Path Crossconnect . . . Add ports . . Fibers In . . l-Mux Drop ports John Strand 1/18/2002 10

Opaque Wavelength Path Crossconnect (Electrical Fabric) 1 -Bay Capacity: 640 Gb/s ® John Strand

Opaque Wavelength Path Crossconnect (Electrical Fabric) 1 -Bay Capacity: 640 Gb/s ® John Strand 1/18/2002 11

An 8 x 8 Switch Chip size: 1 cm x 1 cm Source: L-Y.

An 8 x 8 Switch Chip size: 1 cm x 1 cm Source: L-Y. Lin John Strand 1/18/2002 12

Outline • Transport - Traditional TDM Networks • Optical Networking & IP Concentrate On

Outline • Transport - Traditional TDM Networks • Optical Networking & IP Concentrate On Intercity Networks • Time Constraint • Metro, Access Optical Networks More Complex, Less Mature John Strand 1/18/2002 13

IP Transport Data Services (Mostly IP-Based) Voice & Other TDM-Based Services DS 1 (1.

IP Transport Data Services (Mostly IP-Based) Voice & Other TDM-Based Services DS 1 (1. 5 Mb/Sec) Wideband & Broadband DCS Layers Transport For IP Defining Functionality Of These Interfaces DS 3 (45 Mb/Sec) STM-4 (622 Mb/Sec) Digital Transmission Layer IP For Transport Introducing IP Functionality Into The Optical Layer STM-16 c (2. 5 Gb/Sec) STM-64 c (10 Gb/Sec) Optical Layer Proprietary (20 Gb/Sec - 400+ Gb/Sec) Media Layer John Strand 1/18/2002 14

IP For Transport Replacing The OLXC With A Router IP Services Non-IP Services OXC

IP For Transport Replacing The OLXC With A Router IP Services Non-IP Services OXC OLXC Office Architecture Non-IP Services IP Router “Big Fat Router” Office Architecture John Strand 1/18/2002 15

IP For Transport Comparing The Architectures IP Router Terminating (1 – a) Ports &

IP For Transport Comparing The Architectures IP Router Terminating (1 – a) Ports & Assumed Costs OLXC $x Per OC 48 IP Router $y Per OC 48 OLXC IP Router Through (a) OLXC Office Architecture • • “Big Fat Router” Office Architecture OLXC Architecture Less Expensive If: OLXC Cost x <a Router Cost y Typical Values: • a = 0. 8 • x/y << 0. 2 John Strand 1/18/2002 16

MPLS Transport Hierarchy MPLS IP X s Physical Transmission System • SONET (STS-N) •

MPLS Transport Hierarchy MPLS IP X s Physical Transmission System • SONET (STS-N) • OCh • Etc. LSP X LSP s LSP t LSP u LSP Y LSP a LSP s LSP t • Label Switched Path's (LSP's) Are LOGICAL, NOT PHYSICAL • Need Not Occupy Bandwidth • Specific LSP’s Change At Each MPLS Node: z End-to-end connection defined at set-up John Strand 1/18/2002 17

MPLS Tunneling PUSH 7 POP 3 LSP 7 88 11 42 11 7 SWAP

MPLS Tunneling PUSH 7 POP 3 LSP 7 88 11 42 11 7 SWAP 7=>11 PUSH 42 3 POP 88 SWAP 11=>3 SWAP 42 => 88 LSP 3 LSP 11 LSP 42 LSP 88 • "Virtual" Muxing - No Utilization Penalty • This Is A Key Driver For Replacing TDM John Strand 1/18/2002 18

TDM Multiplexing Tunneling Using MPLS LSP's Is Analogous To TDM Multiplexing DS 1 DS

TDM Multiplexing Tunneling Using MPLS LSP's Is Analogous To TDM Multiplexing DS 1 DS 3 STS-48 DS 3 John Strand 1/18/2002 19

From MPLS To GMPLS PUSH 7 Implicit Label ( 1) SWAP 7=>11 PUSH 42

From MPLS To GMPLS PUSH 7 Implicit Label ( 1) SWAP 7=>11 PUSH 42 POP 3 88 11 42 11 7 LSP 7 Implicit Label ( 2) 3 POP 88 SWAP 11=>3 SWAP 42 => 88 LSP 3 LSP 11 LSP 42( 1) STS-192 LSP 88( 2) STS-192 GMPLS: Generalized MPLS John Strand 1/18/2002 20

GMPLS In An OXC Network 1. Select source, destination, and service 2. OSPF determines

GMPLS In An OXC Network 1. Select source, destination, and service 2. OSPF determines optimal route 3. RSVP-TE/CR-LDP establishes circuit Label Request Message Label Mapping Message Vision: • Provisioning Time: Weeks To Milliseconds • Greatly Simplify Process ISSUE: Standards Lagging Need - Proprietary Control Planes Source: Sycamore OFC 2000 Are Being Deployed Rapidly John Strand 1/18/2002 21

GMPLS Vision Many Technologies - One Network LS: Lambda Switched FS: Fiber Switched PS:

GMPLS Vision Many Technologies - One Network LS: Lambda Switched FS: Fiber Switched PS: Packet Switched FA: Forwarding Adjacency John Strand 1/18/2002 22

GMPLS Overlay Network Model ~ ~ Connection Requests, etc. ~ ~ Router Optical Network

GMPLS Overlay Network Model ~ ~ Connection Requests, etc. ~ ~ Router Optical Network ~ ~ Router UNI ~ ~ • Overlay Network – Optical Network (OXC) computes the path – Network Level Abstraction For IP Control Plane John Strand 1/18/2002 23

GMPLS Peer Network Model ~ ~ Topology & Capacity Information Router ~ ~ Network

GMPLS Peer Network Model ~ ~ Topology & Capacity Information Router ~ ~ Network Signalling Optical Network ~ ~ Router ~ ~ • Peer Network – Router computes the path (Routers have enough information about the characteristics of the optical devices/network) – Link-level abstraction For IP Layer Control Plane John Strand 1/18/2002 24

Canarie OBGP Vision School Aggregating Router Dark Fiber ISP A IGP Oi. BGP Multi

Canarie OBGP Vision School Aggregating Router Dark Fiber ISP A IGP Oi. BGP Multi Home Router IGP University X Dark Fiber Mapped to Dim Wavelength IGP Customer Owned Dark Fiber B. St. Arnaud ISP Controlled Optical Switch Customer Controlled BGP neighbors Optical Switch ISP Controlled Optical Switch IGP OBGP University Y ISP B John Strand 1/18/2002 25

Optical Interworking Forum Services Concept Customers buy managed service at the edge ISP AS

Optical Interworking Forum Services Concept Customers buy managed service at the edge ISP AS 4 AS 1 Optical VLAN AS 1 Customer AS 3 BGP Peering is done at the edge • Bandwidth On Demand - Connection Request Over UNI Specifying Qo. S Desired - Overlay Model • OVPN - Dedicated Subnet Configured By John Strand AS 2 Customer - Peer Model 1/18/2002 26

Examples of network views • View from domain A via a distance-vector or pathvector

Examples of network views • View from domain A via a distance-vector or pathvector protocol Domain 2 Reachable Address list Domain 1 Reachable Address list Domain 4 Reachable Address list Domain 3 Reachable Address list Domain 5 Reachable Address list John Strand 1/18/2002 27

Examples of Network views • View from any domain of the rest of the

Examples of Network views • View from any domain of the rest of the network via a link state protocol Protection 1: N, N=3 Available BW = … SRLG = … Domain 1 Reachable Address list Protection 1+1 Available BW = … SRLG = … Domain 4 Reachable Address list Domain 3 Reachable Address list Protection 1: N, N=10 Available BW = … SRLG = … Domain 2 Reachable Address list Protection 1+1 Available BW = … SRLG = … Protection 1: N, N=7 Available BW = … SRLG = … Domain 5 Reachable Address list John Strand 1/18/2002 28

Initial OIF NNI Target User control Domain Load Balancer L 2/L 3 Load Balancer

Initial OIF NNI Target User control Domain Load Balancer L 2/L 3 Load Balancer firewall L 2/L 3 Load L 2/L 3 firewall Balancer Load Balancer NNI UNI Control Domain C Control Domain A NNI Control Domain B firewall UNI NNI Single carrier’s network User control Domain Load Balancer L 2/L 3 firewall L 2/L 3 Load Balancer firewall Why Single Carrier Multi-Domain First? • Standards Lag Deployment - Vendor Proprietary Control Planes • Rapid & Unpredictable Technological Change Makes It Unlikely That Standards Will Keep Up • Uncertain Business Model Initial Multi-Carrier NNI Likely To Be LEC/IXC (JLS Opinion) 29 John Strand 1/18/2002

oif 2001. 639 - Application-Driven Assumptions And Requirements Metro/Core Characteristics 1. Significant Differences In

oif 2001. 639 - Application-Driven Assumptions And Requirements Metro/Core Characteristics 1. Significant Differences In Technology, Economic Trade-Offs, & Services Supported 2. Likely To Be Multi-Vendor 3. Proprietary Or Customized IGP's Are Likely 4. Significant Operational Autonomy • Information Trust, Not Always Policy Trust • Domains Likely To Require Control Of The Use Of Their Resources 5. Routing • Carrier-Specific • NMS May Be Involved • High Unit Costs, Long Connection Times Make Economics An Important Consideration Metro Y Metro X J K A 6. Conduit & Fiber Cable Sharing Make SRG Information Across Domains Complex - Will Frequently Not Be Available John Strand 1/18/2002 30

oif 2001. 639 - Application-Driven Assumptions And Requirements Metro/Core Characteristics 1. Significant Differences In

oif 2001. 639 - Application-Driven Assumptions And Requirements Metro/Core Characteristics 1. Significant Differences In Technology, Economic Trade-Offs, & Services Supported 2. Likely To Be Multi-Vendor 3. Proprietary Or Customized IGP's Are Likely 4. Significant Operational Autonomy • Information Trust, Not Always Policy Trust • Domains Likely To Require Control Of The Use Of Their Resources 5. Routing • Carrier-Specific • NMS May Be Involved • High Unit Costs, Long Connection Times Make Economics An Important Consideration Y Metro Y J K A 6. Conduit & Fiber Cable Sharing Make SRG Information Across Domains Complex - Will Frequently Not Be Available John Strand 1/18/2002 31

oif 2001. 639 - Application-Driven Assumptions And Requirements Multi-Vendors In Backbone - Characteristics 1.

oif 2001. 639 - Application-Driven Assumptions And Requirements Multi-Vendors In Backbone - Characteristics 1. Proprietary Or Customized IGP's Are Likely 2. Information & Policy Trust Not Likely To Be An Issue 3. Vendor-Specific Technologies & Constraints Not Captured In Standards Are Likely (E. g. , All-Optical, Tunable Lasers, Adaptive Wavebands) B M S T K S T B M N S Q P T Large A Small B R Express Domain of Transparency (Vendor B) Small A Large B U K J Routing Costs: A(nodes) + B(distance) (Vendor A) L P N Z Y Opaque Network R U J A Q P N M L K J A L Q U Z Y R John Strand 1/18/2002 32

IP Transport Data Services (Mostly IP-Based) Voice & Other TDM-Based Services DS 1 (1.

IP Transport Data Services (Mostly IP-Based) Voice & Other TDM-Based Services DS 1 (1. 5 Mb/Sec) Wideband & Broadband DCS Layers Transport For IP Defining Functionality Of These Interfaces DS 3 (45 Mb/Sec) STM-4 (622 Mb/Sec) Digital Transmission Layer IP For Transport Introducing IP Functionality Into The Optical Layer STM-16 c (2. 5 Gb/Sec) STM-64 c (10 Gb/Sec) Optical Layer Proprietary (20 Gb/Sec - 400+ Gb/Sec) Media Layer John Strand 1/18/2002 33

Entering The Transport Network 64 kb/s POTS & VG PL 1. 5 Mb/s 1

Entering The Transport Network 64 kb/s POTS & VG PL 1. 5 Mb/s 1 O O 45 - 622 Mb/s 1 O O 2. 5 - 10 Gb/s o 24 o o o 1. 5 Mb/s PL 45 - 622 Mb/s PL 1 - 10 Gb/s PL 28 BW Growth Rates Backbone Fiber Network POTS: "Plain Old Telephone Service" VG: Voice Grade PL: Private Line John Strand 1/18/2002 34

US Domestic Backbone (Mid-’ 99) 268, 794 OC-12 Miles John Strand 1/18/2002 35

US Domestic Backbone (Mid-’ 99) 268, 794 OC-12 Miles John Strand 1/18/2002 35

Transport Layering Data Services (Mostly IP-Based) Voice & Other TDM-Based Services DS 1 (1.

Transport Layering Data Services (Mostly IP-Based) Voice & Other TDM-Based Services DS 1 (1. 5 Mb/Sec) XX X X Wideband & Broadband DCS Layers DS 3 (45 Mb/Sec) OC-12 (622 Mb/Sec) OC-48 c (2. 5 Gb/Sec) OC-192 c (10 Gb/Sec) Proprietary (20 Gb/Sec - 400+ Gb/Sec) Digital Transmission Layer • ADM's • Rings Functionality & Value Added Optical Layer • Optical Transport Systems (DWDM, OADM) • "Optical Cross-Connects" Media Layer • Fiber • Conduit John Strand 1/18/2002 36

Transport For IP Customer Drivers Possible Solution Elements • Price - $/OC 48/month •

Transport For IP Customer Drivers Possible Solution Elements • Price - $/OC 48/month • Rapid Provisioning • Availability • How Quickly • Where • Optical Network Interworking • Heterogeneous Technologies • Metro/Core • Other Backbone Providers • Displacement Of Internal ISP Costs • Interfaces • Cost Of Reliability • Buffer Capacity • Peak Loads • Traffic Shifts • Traffic Growth • Network Management • Differentiators • Availability • Qo. S • Flexible Bandwidth • Asymmetric Circuits • Concatenated Links • Virtual Concatenation • Inverse Multiplexing • Additional Customer Restoration Options • Re-Provisioning • Customer Control • Speed Options • Sub-OC 48 Functionality • Layer 1 Interface Enhancements John Strand 1/18/2002 37

Restoration Refresher Key Trade-Off Restoration Granularity Services Layers DCS Layers Unit Capacity Cost Connection

Restoration Refresher Key Trade-Off Restoration Granularity Services Layers DCS Layers Unit Capacity Cost Connection STS-1 => STS-12 Digital Transmission Layer STS-48+ Optical Layer l or Fiber • Services Layer (IP) Can Restore Exactly The Right Connections • Optical Layer More Economical If Large Bundles Of Connections Need To Be Restored John Strand 1/18/2002 38

ISP Peering Relationships Peer Provider Peer (Frequently) No $$ Customer EXPENSIVE John Strand 1/18/2002

ISP Peering Relationships Peer Provider Peer (Frequently) No $$ Customer EXPENSIVE John Strand 1/18/2002 39

Transport For IP Reducing The BGP Hop Count R C B A X Hi-Usage

Transport For IP Reducing The BGP Hop Count R C B A X Hi-Usage Trunks Tier 1 ISP Optical Direct Connects Y Z Toll Switching Hierarchy Regional ISP Local ISP Internet ISP Hierarchy Typical Transit Cost (Telia): $1 K - 10 K / Mbps /Year John Strand 1/18/2002 40

References • T. E. Stern & K. Bala, Multiwavelength Optical Networks, Addison-Wesley, 1999 •

References • T. E. Stern & K. Bala, Multiwavelength Optical Networks, Addison-Wesley, 1999 • J. L. Strand, “Optical Network Architecture Evolution”, chapter in I. Kaminow and T. Li (eds. ), Optical Fiber Telecommunications IV, Academic Press, to appear March 2002 • R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, San Francisco: Morgan Kaufmann, 1998. • R. H. Cardwell, O. J. Wasem, H. Kobrinski, “WDM Architectures and Economics in Metropolitan Areas", Optical Networks, vol. 1 no. 3, pp. 41 -50 • O. Gerstel and R. Ramaswami, "Optical Layer Survivability: A Services Perspective", IEEE Communications Magazine, vol. 38 no. 3, March 2000, pp. 104 -113. • R. D. Doverspike, S. Phillips, and Jeffery R. Westbrook, "Future Transport Network Architectures", IEEE Communications Magazine, vol. 37 no. 8, August 1999, pp. 96 -101. • R. Doverspike and J. Yates, "Challenges for MPLS in Optical Network Restoration", IEEE Communications Magazine, vol. 39 no. 2, Feb. 2001, pp. 89 -96. • M. W. Maeda, "Management and Control of Transparent Optical Networks", IEEE J. on Selected Areas In Communications, vol. 16, no. 7, Sept. 1998, pp. 1008 -1023. • J. L. Strand, J. ; A. L. Chiu, , R. Tkach, . “Issues For Routing In The Optical Layer”, IEEE Communications Magazine, 2/2001, vol. 39, no. 2, pp. 81 – 87 • John Strand, Robert Doverspike, Guangzhi Li, “Importance of Wavelength Conversion In An Optical Network” , Optical Networks Magazine, vol. 2 No. 3 (May/June 2001), pp. 33 -44 • R. W. Tkach, E. L. Goldstein, J. A. Nagel, J. L. Strand, “Fundamental limits of optical transparency”, OFC '98, pp. 161 -162 • A. L. Chiu, J. L. St, rand, “Joint IP/Optical Layer Restoration After A Router Failure”, OFC 2001, vol. 1, pp. MN 5_1 -MN 5_2. John Strand 1/18/2002 41

Some Relevant U. S. Web Sites “Tier 1” Inter City Service Providers • AT&T

Some Relevant U. S. Web Sites “Tier 1” Inter City Service Providers • AT&T • MCI Worldcom • Sprint http: //www. att. com http: //www. wcom. com http: //www. sprint. com New Entrants • Qwest • Level 3 • Frontier • Williams http: //www. qwest. com http: //www. Level 3. com http: //www. frontiercorp. com http: //www. williams. com Major Equipment Providers • Lucent • Alcatel • Nortel • Cisco • NEC http: //www. lucent. com http: //www. alcatel. com http: //www. nortel. com http: //www. cisco. com http: //www. nec. com Standards Organizations • ITU • T 1 • OIF • IETF • ATM Forum http: //www. itu. int http: //www. t 1. org http: //www. oiforum. com http: //www. ietf. org http: //www. atmforum. com New Business Models • Band-X • Arbinet http: //www. band-x. com http: //www. arbinet. com Government Sites: • FCC • NTIA http: //www. fcc. gov http: //www. ntia. doc. gov New Equipment Vendors • Ciena & Lightera • Cisco & Monterey • Avici • Juniper • Sycamore http: //www. ciena. com http: //www. montereynets. com http: //www. avici. com http: //www. juniper. net http: //www. sycamore. com John Strand 1/18/2002 42