Magnetoplasmonic nanostructures Nikolaos Stefanou Department of Solid State

  • Slides: 27
Download presentation
Magnetoplasmonic nanostructures Nikolaos Stefanou Department of Solid State Physics National and Kapodistrian University of

Magnetoplasmonic nanostructures Nikolaos Stefanou Department of Solid State Physics National and Kapodistrian University of Athens

Magneto-optical response of materials z >0, dielectric <0, metallic losses

Magneto-optical response of materials z >0, dielectric <0, metallic losses

z eigenvectors eigenvalues LCP RCP longitudinal RCP LCP

z eigenvectors eigenvalues LCP RCP longitudinal RCP LCP

Particle Plasmons: localized states of EM field, e. g. in a noble metal nanoparticle

Particle Plasmons: localized states of EM field, e. g. in a noble metal nanoparticle Ag

Circular Dichroism: Differential absorption of LCP and RCP light TEM 40 nm F. Pineider

Circular Dichroism: Differential absorption of LCP and RCP light TEM 40 nm F. Pineider et al. , Nano Lett. 13, 4785 (2013) Applications for environmental sensors. Required strong fields > 10 T

Αg (40 nm) Co-Ag (28 nm 40 nm) Ag: strong plasmon resonances, weak magneto-optic

Αg (40 nm) Co-Ag (28 nm 40 nm) Ag: strong plasmon resonances, weak magneto-optic effects Co: gyrotropic responce, strong magnetooptic effects, no plasmon resonances

Hydrid nanoparticles consisting magnetic core (Co) and plasmonic shell (Ag) L. Wang et al.

Hydrid nanoparticles consisting magnetic core (Co) and plasmonic shell (Ag) L. Wang et al. , Nano Lett. 11, 1237 (2011)

Scattering from gyrotropic sphere with isotropic shell Host: Shell: Core: Boundary conditions scattering T

Scattering from gyrotropic sphere with isotropic shell Host: Shell: Core: Boundary conditions scattering T matrix

Applications: nanoparticles Co-Ag : absorption cross section and electric field amplitude distribution (16 -40)

Applications: nanoparticles Co-Ag : absorption cross section and electric field amplitude distribution (16 -40) nm (28 -40) nm

Circular dichroism of core-shell Co-Ag spheres (16 -40) nm (28 -40) nm

Circular dichroism of core-shell Co-Ag spheres (16 -40) nm (28 -40) nm

Diagonal (upper diagram) and nondiagonal (lower diagram) elements of the relative perimittivity tensor for

Diagonal (upper diagram) and nondiagonal (lower diagram) elements of the relative perimittivity tensor for magnetized cobalt Im Re g Re Im

Garnets, e. g. , Yttrium Iron Garnet §Ferrimagnetic material §Transparent for , low losses

Garnets, e. g. , Yttrium Iron Garnet §Ferrimagnetic material §Transparent for , low losses §YIG spheres commercially available §Large Faraday rotation §Saturation magnetization ØOptical and magneto-optical applications ØMicrowave filters TEM image of Bi: YIG nanospheres ØMagneto-optic devices T. Kim et al. , J. Nanopart. Res. 9, 737 (2007) ØSolid State lasers

Plasmon Hybridization Antibonding hybrid plasmon Bonding hybrid plasmon C. S. Levin et al. ,

Plasmon Hybridization Antibonding hybrid plasmon Bonding hybrid plasmon C. S. Levin et al. , ACS Nano 3, 1379 (2009)

Hybrid nanoparticles consisting of dielectric core (Bi: YIG) and plasmonic shell (Ag) (16 -40)

Hybrid nanoparticles consisting of dielectric core (Bi: YIG) and plasmonic shell (Ag) (16 -40) nm (28 -40) nm

Circular dichroism of core-shell Bi: YIG-Ag spheres (16 -40) nm (28 -40) nm

Circular dichroism of core-shell Bi: YIG-Ag spheres (16 -40) nm (28 -40) nm

Diagonal (upper diagram) and nondiagonal (lower diagram) elements of the relative perimittivity tensor for

Diagonal (upper diagram) and nondiagonal (lower diagram) elements of the relative perimittivity tensor for magnetized Bi: YIG

Light propagation in stratified media • conserved , , z

Light propagation in stratified media • conserved , , z

Scattering matrices of a 2 D periodic • array of scatterers conserved α Bloch

Scattering matrices of a 2 D periodic • array of scatterers conserved α Bloch theorem Layer-Multiple Scattering method N. Stefanou et al. , Computer Phys. Commun. 113, 49 (1998); 132, 189 (2000); Phys. Rev. B 73, 035115 (2006)

Faraday rotation Homogeneous Magnetic material

Faraday rotation Homogeneous Magnetic material

Hybrid core-shell nanoparticles Dielectric magnetic core-Metallic shell Plasmon mode localized in the magnetic core

Hybrid core-shell nanoparticles Dielectric magnetic core-Metallic shell Plasmon mode localized in the magnetic core material

Core-shell nanoparticles Core Shell • Host medium Volume filling fraction 50%

Core-shell nanoparticles Core Shell • Host medium Volume filling fraction 50%

Photonic band diagram of the homogenized crystal

Photonic band diagram of the homogenized crystal

Photonic band diagram of an fcc crystal Band hybridization d

Photonic band diagram of an fcc crystal Band hybridization d

Faraday rotation through an fcc (111) slab of 64 layers f

Faraday rotation through an fcc (111) slab of 64 layers f

8 fcc (111) layers (a=34 nm) of Bi: YIG (12 nm) - Ag (15

8 fcc (111) layers (a=34 nm) of Bi: YIG (12 nm) - Ag (15 nm) core-shell nanoparticles Exact Effective medium

B lack of time-reversal and space-inversion symmetries J. Sharma et al. , Science 323,

B lack of time-reversal and space-inversion symmetries J. Sharma et al. , Science 323, 112 (2009) spectral nonreciprocity optical communications computing technologies one-way propagation

Nonreciprocal layer modes

Nonreciprocal layer modes