Application of TimeResolved FourierTransform Infrared Spectroscopy to Photodissociation

  • Slides: 55
Download presentation
Application of Time-Resolved Fourier-Transform Infrared Spectroscopy to Photodissociation Dynamics Yuan-Pern Lee, Department of Applied

Application of Time-Resolved Fourier-Transform Infrared Spectroscopy to Photodissociation Dynamics Yuan-Pern Lee, Department of Applied Chemistry and Institute of Molecular Science National Chiao Tung University, Hsinchu, Taiwan

Outline l Introduction of step-scan FTS l Emission mode – slit-jet system Photolysis of

Outline l Introduction of step-scan FTS l Emission mode – slit-jet system Photolysis of Fluoro-compound l Emission mode – flow system Cl + CH 3 SH, O(1 D) + CO l Absorption mode – White cell C 6 H 5 SO 2 and its reactions

The Michelson Interferometer

The Michelson Interferometer

Step-scan Data Acquisition I x 1 x 2 x 3 x 4 x 5

Step-scan Data Acquisition I x 1 x 2 x 3 x 4 x 5 x 6 x 7 t 1 t 2 t 3 t 4 t 5 t 6 time

Experimental Setup (Emission) 10 ns / 0. 1 s 0. 1 / 0. 25

Experimental Setup (Emission) 10 ns / 0. 1 s 0. 1 / 0. 25 cm-1

Photolysis of Vinyl Chloride h + Cl HCCH + H H H C Cl

Photolysis of Vinyl Chloride h + Cl HCCH + H H H C Cl C 2 H 2 Cl + H HCCH + Cl HCCCl + H 2 H : CC + H 2 Cl : CCH 2 + HCl (3 -center) HCCH + HCl (4 -center)

Rotational Distribution of HCl (v)

Rotational Distribution of HCl (v)

HCl-elimination from C 2 H 3 Cl Bimodal rotational distribution of HCl(v) high J

HCl-elimination from C 2 H 3 Cl Bimodal rotational distribution of HCl(v) high J (3 -center) low J (4 -center) Trot 10, 000 K Trot 500 K Tvib 16, 000 K peaked at v' = 2 ratio 83 : 17 Evidence of “kick” from vinylidene acetylene Vibrational adiabaticity? J. Chem. Phys. 114, 160 (2001)

Photolysis of CF 2 CHCl at 193 nm F H C F : CCF

Photolysis of CF 2 CHCl at 193 nm F H C F : CCF 2 C Cl X h � : CCF 2 + HCl (3 -center) FCCCl + HF (4 -center) FCCF J. Chem. Phys. 117, 9785 (2002)

Configuration of twin slit jets

Configuration of twin slit jets

TR-FTS with Twin Slit Jets Slit-Jet

TR-FTS with Twin Slit Jets Slit-Jet

Comparison of rot. distribution jet theory flow REMPI

Comparison of rot. distribution jet theory flow REMPI

Photolysis of Fluorobenzene at 193 nm

Photolysis of Fluorobenzene at 193 nm

HF Emission from C 6 H 5 F (jet) at 248 nm

HF Emission from C 6 H 5 F (jet) at 248 nm

Rotational populations of HF after photolysis of C 6 H 5 F/He ~30 m.

Rotational populations of HF after photolysis of C 6 H 5 F/He ~30 m. Torr at 248 nm

Vibrational population of HF

Vibrational population of HF

Photolysis of C 6 H 5 F at 193 nm Nascent internal energy of

Photolysis of C 6 H 5 F at 193 nm Nascent internal energy of HF Erot = 15 2 k. J mol-1 (17 2 k. J mol-1 ) Evib = 34 4 k. J mol-1 (37 4 k. J mol-1 ) Eava = 284 k. J mol-1; Etrans = 96 k. J mol-1; EHF = 48 k. J mol-1 (54 6 k. J mol-1 ) EC 6 H 4 = 140 k. J mol-1 (134 8 k. J mol-1 ? )

Photolysis of CH 3(C 6 H 4)F at 193 nm

Photolysis of CH 3(C 6 H 4)F at 193 nm

14. 1 kcal mol-1 12. 8 kcal mol-1 109. 7 kcal mol-1 91. 3

14. 1 kcal mol-1 12. 8 kcal mol-1 109. 7 kcal mol-1 91. 3 kcal mol-1

PES for HF-elimination of o-Fluorotoluene

PES for HF-elimination of o-Fluorotoluene

Transition States of CH 3(C 6 H 4)F Species CH 2 CHF (528 k.

Transition States of CH 3(C 6 H 4)F Species CH 2 CHF (528 k. J) CF 2 CHCl (458 k. J) C 6 H 5 F (284 k. J) CH 3 C 6 H 4 F (251 k. J) RHF /Å Evib /k. J mol-1 Erot (expt) Erot (impulse) /k. J mol-1 Angle 1. 281 83± 9 (0. 157) 8. 2 (219 k. J) 1 -4 3. 9 1. 176 46± 6 (0. 100) 17. 0 (199 k. J) 20± 4 16 1. 08 34± 6 (0. 120) 32. 8 (56 k. J) 15± 4 14 1. 08 ~26± 5 (0. 103) 27. 0 (59 k. J) ~10± 2 11

IR emission from C 6 H 5 F irradiation at 248 nm

IR emission from C 6 H 5 F irradiation at 248 nm

Dynamics in Bimolecular Reactions

Dynamics in Bimolecular Reactions

Dynamics in Bimolecular Reactions • Products are not produced instantly – Needs collisions –

Dynamics in Bimolecular Reactions • Products are not produced instantly – Needs collisions – Depends on rate coefficients • Rotational quenching might be substantial – Non-negligible after 1 s • Nascent vibrational populations – Less affected by quenching – Extrapolation to t = 0 might have errors

Previous Derivation of Rot. Distrib.

Previous Derivation of Rot. Distrib.

Rotational Temperatures of HCl (v = 1) from Cl + H 2 S J.

Rotational Temperatures of HCl (v = 1) from Cl + H 2 S J. Chem. Phys. 119, 4229 (2003)

Temporal Profiles of HCl (v = 1, 2) Model of fitting Cl + H

Temporal Profiles of HCl (v = 1, 2) Model of fitting Cl + H 2 S HCl (v = 2) + HS k 2 Cl + H 2 S HCl (v = 1) + HS k 1 HCl (v = 2) HCl (v = 1) kq 2 HCl (v = 1) HCl (v = 0) kq 1

Comparison of Cl + H 2 S and Cl +CH 3 SH J. Chem.

Comparison of Cl + H 2 S and Cl +CH 3 SH J. Chem. Phys. 120, 1792 (2004) Cl + H 2 S Cl + CH 3 SH fr 0. 12 0. 02 0. 10 0. 02 fv 0. 33 0. 07 0. 49 0. 10 H. . . Cl 1. 619 Å 1. 675 Å D-effect rate ~0. 50 little effect TS (adduct) longer short-lived

Transition States of Cl + CH 3 SH

Transition States of Cl + CH 3 SH

Dynamics of the 1 O( D) +CO reaction

Dynamics of the 1 O( D) +CO reaction

E-V energy transfer Long-lived CO 2* collision complex Harding/Weston. Flynn JCP 88, 3590 (1988)

E-V energy transfer Long-lived CO 2* collision complex Harding/Weston. Flynn JCP 88, 3590 (1988)

Comparison of Literature Values on Efficiency n E-V energy transfer efficiency 40 % Slanger

Comparison of Literature Values on Efficiency n E-V energy transfer efficiency 40 % Slanger et al. (1974) Expt. 21 % Shortridge et al. (1976) Expt. 25 % Harding et al. (1988) Expt. 31 % Matsumi et al. (1994) Expt. 29 % Makoto et al. (1994) Expt. 29 % Tully (1974) Theor. 21 % Kinnersly (1979) Theor.

Comparison of CO Vibrational Distribution J. P. C. 1994, 98, 12641 -12645 Makoto Abe,

Comparison of CO Vibrational Distribution J. P. C. 1994, 98, 12641 -12645 Makoto Abe, Yousuke Inagaki, Larry Yousuke Inagaki, L. Springsteen, Yutaka. L. Matsumi, Larry Springsteen, and Masahiro Yutaka Matsumi, Kawasaki, Hiroto Tachikawa. Kawasaki, Masahiro Hiroto Tachikawa (●) experimental work; (○) trajectory calculation; (Δ) Harding et al. (□) Shortridge et al.

CO Rotational Distribution J. P. C. 1994, 98, 12641 -12645 Makoto Abe, Yousuke Inagaki,

CO Rotational Distribution J. P. C. 1994, 98, 12641 -12645 Makoto Abe, Yousuke Inagaki, Larry L. Springsteen, Yutaka Matsumi, Masahiro Kawasaki, Hiroto Tachikawa

Infrared emission spectra of CO

Infrared emission spectra of CO

Comparison with Abe et al.

Comparison with Abe et al.

Detection of Intermediates TR-FTS in absorption mode

Detection of Intermediates TR-FTS in absorption mode

Experimental Setup for TRS-Absorption

Experimental Setup for TRS-Absorption

J. Chem. Phys. 120, 3179 (2004) Absorption of Cl 2 SO irradiated at 248

J. Chem. Phys. 120, 3179 (2004) Absorption of Cl 2 SO irradiated at 248 nm resolution = 1. 5 cm-1; laser fluence = 100 m. J cm-2 Cl 2 SO = 0. 35, Ar = 24. 4 Torr Cl 2 SO = 0. 35, Ar = 1. 5 Torr

Simulated spectrum of Cl. SO at 300 K - Simulated - Experiment Resolution =

Simulated spectrum of Cl. SO at 300 K - Simulated - Experiment Resolution = 0. 3 cm-1; A’/A”, B’/B”, C’/C” = 0. 9906, 0. 9993, 0. 9982 a-type/b-type = 1/0. 2; Jmax=120; temp. = 350 K

Photolysis of C 6 H 5 SO 2 Cl

Photolysis of C 6 H 5 SO 2 Cl

C 6 H 5 SO 2 Cl irradiated at 248 nm in a static

C 6 H 5 SO 2 Cl irradiated at 248 nm in a static cell R = 0. 5 cm-1 after 248 nm irradiating for 2 min at 10 Hz C 6 H 5 SO 2 Cl = ~140 m. Torr

Transient absorption upon photolysis of C 6 H 5 SO 2 Cl at 248

Transient absorption upon photolysis of C 6 H 5 SO 2 Cl at 248 nm C 6 H 5 SO 2 Cl / N 2 = 1 / 240 at P = 72 Torr Temp. = 80 C R = 2 cm-1 7 expt. ave. 0 -7 s A 1 : 1278. 2 cm-1 A 2 : 1087. 7 cm-1 S : 1361. 8 cm-1 (SO 2 s-str. ) static C 6 H 5 SO 2 Cl P : 1453. 5, 1403. 5, 1196. 4, 1088. 7 cm-1

Photolysis of C 6 H 5 SO 2 Cl C 6 H 5 SO

Photolysis of C 6 H 5 SO 2 Cl C 6 H 5 SO 2 Reaction of C 6 H 5 with SO 2 C 6 H 5 SO 2 C 6 H 5 Cl C 6 H 5 + Cl C 6 H 5 Br C 6 H 5 + Br

Reaction of C 6 H 5 and SO 2 A 1 : 1278. 2

Reaction of C 6 H 5 and SO 2 A 1 : 1278. 2 cm-1 ; A 2 : 1087. 7 cm-1 B 1 : 1391. 6 / 1408. 6 cm-1 ; B 2 : 1203. 4 cm-1 C 6 H 5 SO 2 Cl / N 2 T= 80 C R = 2 cm-1 7 expt. Ave. 0 - 7 s T = 25 C R = 4 cm-1 22 - 52 s C 6 H 5 Cl / SO 2 / N 2 = 1 / 14 / 100 at P = 59 Torr C 6 H 5 Br / SO 2 / N 2 = 1 / 10 / 150 at P = 63 Torr T = 25 C R = 1. 5 cm-1 8 expt. ave. 17 - 47 s

Possible products: C 6 H 5 SO 2 C 6 H 5 OSO C

Possible products: C 6 H 5 SO 2 C 6 H 5 OSO C 6 H 4 SO 2

Prediction of harmonic frequencies by DFT calculation C 6 H 5 SO 2 1044.

Prediction of harmonic frequencies by DFT calculation C 6 H 5 SO 2 1044. 9 (8. 3) / 1031. 6 (24) C 6 H 5 OSO C 6 H 4 SO 2 Exp. 1022. 1 (0. 9) 1017. 9 (1. 7) 1063. 5 (16) / 1048. 6 (21. 4) 1052. 4 (9. 8) 1053. 9 (9. 1) 1092. 2 (93) / 1071. 6 (56. 8) 1103. 4 (9. 4) 1146. 9 (0. 5) 1087. 7 1101. 2 (7. 9) / 1099. 6 (7. 2) 1153. 2 (170. 9) 1166. 5 (328) 1203. 4 1181. 1 (0. 1) / 1185. 3 (0. 2) 1175. 9 (1. 8) 1194. 8 (1. 3) / 1199. 1 (2. 0) 1187. 4 (14. 0) 1278. 4 (0. 9) 1193. 1 (33. 8) 1264. 1 (111)/ 1226. 8 (106) 1216. 1 (121. 7) 1325. 9 (203) 1278. 2 1333. 4 (0. 2) / 1330. 0 (0. 5) 1336. 0 (0. 2) 1366. 3 (20. 5) 1391. 6 ? 1364. 4 (2. 5) / 1347. 6 (2. 8) 1364. 9 (0. 8) 1448. 1 (20. 8) 1481. 1 (12) / 1479. 9 (10. 8) 1491. 0 (2. 6) 1482. 5 (23. 3) B 3 P 86 / P 3 LYP with aug-cc-p. VTZ B 3 P 86 with 6 -311 G**

Simulated spectrum of C 6 H 5 SO 2 simulation parameters A = 0.

Simulated spectrum of C 6 H 5 SO 2 simulation parameters A = 0. 11579 cm-1 B = 0. 03369 cm-1 C = 0. 02645 cm-1 A /A = 1. 007 B /B = 0. 997 C /C = 0. 997 Temp. = 300 K Jmax=130 b-type: c-type = 1 : 0. 3 T 0 = 1279. 3 cm-1

Reaction of C 6 H 5 Br + SO 2 + 248 nm C

Reaction of C 6 H 5 Br + SO 2 + 248 nm C 6 H 5 + SO 2 (C 6 H 5 OSO) C 6 H 4 OSOH Reaction of C 6 H 5 Cl + SO 2 + 248 nm C 6 H 5 + SO 2 (C 6 H 5 OSO) C 6 H 4 OSOH C 6 H 5 SO 2 Br C 6 H 5 SO 2 Cl

temporal profile of C 6 H 5 Br + SO 2 at 248 nm

temporal profile of C 6 H 5 Br + SO 2 at 248 nm C 6 H 4 OSOH 3619 -3586 cm-1 t =4. 6 103 s-1 t=4. 4 103 s-1 Bn Bn(3700) t =1. 3 104 s-1 CAn. H 6 t =3. 1 103 s-1 Cn 5 SO 2 C 6 H 5 SO 2 Br

Summary • Transient absorption bands at 1278 and 1088 cm-1, observed upon photolysis of

Summary • Transient absorption bands at 1278 and 1088 cm-1, observed upon photolysis of C 6 H 5 SO 2 Cl at 248 nm, are assigned as the SO 2 stretching modes of C 6 H 5 SO 2. • Same bands were observed from reactions of C 6 H 5 with SO 2 using C 6 H 5 Cl and C 6 H 5 Br as precursors. • Additional transient absorption bands at 1203, 1408, and 3607 cm-1, observed upon reaction of C 6 H 5 with SO 2, might be due to C 6 H 4 SOH. • Kinetics formation of C 6 H 5 SO 2 and C 6 H 4 SOH are discussed.

SUMMARY Applications of Time-resolved FTIR Dynamics in Photolysis l 4 -center molecular elimination of

SUMMARY Applications of Time-resolved FTIR Dynamics in Photolysis l 4 -center molecular elimination of HF Dynamics in Bimolecular Reactions l Cl + H 2 S/CH 3 SH, O(1 D) + CO Detection of Intermediates (absorption) l Cl. SO, Cl. CS, C 6 H 5 SO 2 Multiplex advantage

Acknowledgments Ministry of Education National Science Council IAMS, Academia Sinica Chia-Yan Wu, Li-Kang Chu

Acknowledgments Ministry of Education National Science Council IAMS, Academia Sinica Chia-Yan Wu, Li-Kang Chu Sherry Liao, Shen-Kai Yang