Vacuum Integration CWT Niklas Templeton 25012018 1 Vacuum

  • Slides: 20
Download presentation
Vacuum Integration & CWT Niklas Templeton 25/01/2018 1

Vacuum Integration & CWT Niklas Templeton 25/01/2018 1

Vacuum Integration & CWT • Reference Designs • Constraints • Preliminary Calculations • Design

Vacuum Integration & CWT • Reference Designs • Constraints • Preliminary Calculations • Design Options • Thermal Analysis 2

DQW CWT & Vacuum Integration 3

DQW CWT & Vacuum Integration 3

DQW CWT & Vacuum Integration Location Reaction (W) 300 K 0. 66 80 K

DQW CWT & Vacuum Integration Location Reaction (W) 300 K 0. 66 80 K -0. 62 2 K -0. 04 4

CWT 11 T Dipole Interconnect CWT drift tube total length (mm) PIM position L

CWT 11 T Dipole Interconnect CWT drift tube total length (mm) PIM position L 2 (mm) L 4 (mm) Heat load 5 K including radiation (W) Heat load 70 K including radiation (W) Short 148 mm Upstream 0 mm 148 mm 2, 30 W Long 214 mm Downstream 66 mm 148 mm 1, 23 W 3, 49 W Design of beam lines inside 11 T dipoles and TCLD collimators cryostats (Q. Deliege) https: //indico. cern. ch/event/528126/attachments/1288605/1918296/VSC_Seminar_QD_10_06_2016. pdf Average on both CWTs 1, 68 W 2, 90 W 5

CWT Requirements & Constraints • 4 CWT Tubes • 4 x DN 63 Vac.

CWT Requirements & Constraints • 4 CWT Tubes • 4 x DN 63 Vac. Instrument. Ports • • Copper Plated Tube • • Screened Bellows 80 K Thermalisation Cavity & Beam Screen Interface 6

Preliminary Calculation – No Bellows Preliminary Calculation of single beam tube (2 mm thick)

Preliminary Calculation – No Bellows Preliminary Calculation of single beam tube (2 mm thick) to determine the need for bellows to reduce heat leak http: //cryogenics. nist. gov/MProps. MAY/ 7

Preliminary Calculation – Length Sweep L 1 (mm) L 2 (mm) Q 300 (W)

Preliminary Calculation – Length Sweep L 1 (mm) L 2 (mm) Q 300 (W) Q 80 (W) Q 2 (W) 90 280 15. 6 -14. 8 -0. 7 140 230 10. 0 -9. 2 -0. 9 190 7. 4 -6. 3 -1. 0 230 140 6. 1 -4. 7 -1. 4 280 90 5. 0 -2. 9 -2. 1 Weighting function of low-temperature refrigeration exergetic cost (Advances in Cryogenic Engineering, Volume 43, Peter Kittel) Comments: • Minima occurs ~ midpoint • Heaters required @ 300 K • 80 K Load ≈ 4 x 6. 3 W ≈ 25 W • 2 K Load ≈ 4 W Conclusion: 80 & 2 K Static Loads are too high for simple 2 mm thick tube 8

Preliminary Calculation – Thickness Sweep 80 K Intercept fixed at midpoint Q 80 190

Preliminary Calculation – Thickness Sweep 80 K Intercept fixed at midpoint Q 80 190 t t (mm) Q 300 (W) Q 80 (W) Q 2 (W) 2 7. 38 -6. 35 -1. 03 1. 5 5. 58 -4. 80 -0. 78 1 3. 74 -3. 22 -0. 52 0. 5 1. 89 -1. 63 -0. 26 Q 2 Q 300 Comments: 380 • Thinning beam tube reduces heat load • Relationship is linear 0. 5 mm tube gives: • 80 K Load = 6. 5 W • 2 K Load = 1 W 0. 5 mm tube seems feasible (thermally) Mechanical feasibility to be checked… 9

Preliminary Calculation – Copper Plating Calculation to estimate heat leak through copper plated layer

Preliminary Calculation – Copper Plating Calculation to estimate heat leak through copper plated layer Q 80 L t = 4 ± 1µm L (mm) Q 300 Q (W) 3 µm 4 µm 5 µm 100 0. 14 0. 19 0. 23 150 0. 09 0. 12 0. 15 200 0. 07 0. 09 0. 12 Comments: • Some heat transfer occurs from 300 - 80 K via beamtube copper plating • Approximately 0. 1 - 0. 2 W Load can be neglected at this stage of analysis Thermal Conductivity (kcu) of Coppers with Different Purities (Cryocomp, Hepak, CRYODATA software, Cryodata Inc. 1999) 10

Thin Tube + Bellows Design Staggered Valves (Assembled Last) Welded Interface Beam Screen Cu

Thin Tube + Bellows Design Staggered Valves (Assembled Last) Welded Interface Beam Screen Cu Tube DN 63 Vac Instrumentation Ports Cu. Be Fingers t = 0. 5 mm 146 Cavity 132 L Plate for Fastener Access 11

Thin Tube + Bellows Thermal Analysis 0. 97 W total Heat Flow, Q 300

Thin Tube + Bellows Thermal Analysis 0. 97 W total Heat Flow, Q 300 K Top 0. 97 W total 300 K 4. 81 W total 80 K intercepts -5. 40 W total 2 K Beam -0. 16 W 2 K Screen -0. 21 W Assumptions -5. 40 W total 4. 81 W total • Fully Welded – Perfectly bonded connections • Spring Fingers & Bellows Screen Excluded • Dynamic Heat Load Neglected • Radiative Heat Loads Neglected -0. 16 W -0. 21 W 12

Double Bellows Design Staggered Valves (Assembled Last) Welded Interface Single Spring Fingers Option Beam

Double Bellows Design Staggered Valves (Assembled Last) Welded Interface Single Spring Fingers Option Beam Screen DN 63 Vac Instrumentation Ports Cu Tube Cu. Be Fingers Cavity Double Spring Fingers Option L Plate for Fastener Access 13

Double Bellows Thermal Analysis 0. 15 W total Heat Flow, Q 300 K Top

Double Bellows Thermal Analysis 0. 15 W total Heat Flow, Q 300 K Top 0. 15 W total 300 K 2. 03 W total 80 K intercepts -1. 81 W total 2 K Beam -0. 16 W 2 K Screen -0. 21 W Shielding Temperature 2. 03 W total Screen Tube 278 K Screen Fingers 79 K Beam Fingers 1 278 K Beam Tube 81 K Beam Fingers 2 2 K -1. 81 W total -0. 16 W -0. 21 W 14

Shielded Bellows Temperatures 2 K 79 K 81 K 278 K Single Spring Fingers

Shielded Bellows Temperatures 2 K 79 K 81 K 278 K Single Spring Fingers Option Double Spring Fingers Option 15

Thin Tube + Bellows Summary Thin Tube + Bellows • Higher 80 K load

Thin Tube + Bellows Summary Thin Tube + Bellows • Higher 80 K load • Simpler bellows shielding • Complex Vac. Inst. port integration Double Bellows • Lower 80 K load • More complex bellows shielding • Greater welding requirement Double Bellows CWT Option 80 K Heat Load 2 K Heat Load (W) Thin Tube + Bellows 5. 40 0. 37 Double Bellows 1. 81 0. 37 Total Static Budget for SPS DQW 240 16. 8 16

Questions / Discussion 17

Questions / Discussion 17

All Gasket Vacuum Integration Option DN 160 Gate Valves Staggered for Integration/assembly DN 100

All Gasket Vacuum Integration Option DN 160 Gate Valves Staggered for Integration/assembly DN 100 Vacuum Vessel Interface DN 160 DN 100 Gate Valve Interface DN 100 18

CWT Side Section 19

CWT Side Section 19

Plug-in module + Cold Warm Transition § Cold warm transition (CWT): § The cryomodule

Plug-in module + Cold Warm Transition § Cold warm transition (CWT): § The cryomodule doesn’t shrink & it holds the sector valve. § The same concept as LSS 1, 2, 5&8 Q 1 cold warm transition. § Is not attached to thermal shield as in LHC CWT. Beam slotted screen § Material: § Stainless steel + copper plating layer (thickness 4 ± 1µm). § Instrumentation port with beam shield (ID 60 mm & DN 63 flange). § Plug-in module: § To be sized from a standard LHC plug-in module. § LHC reference: LHCVBMV_0002. Thermal shield Cooper braids 2 K logo area 80 K 80 -300 K Cryomodule Pablo Santos Díaz - Conceptual design of the Crab Cavities vacuum system - 26 th October 2017 20