Network Security What is network security Principles of

  • Slides: 49
Download presentation
Network Security What is network security? Principles of cryptography Authentication Access control: firewalls Attacks

Network Security What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and counter measures 1

What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m

What is network security? Confidentiality: only sender, intended receiver should “understand” message contents m sender encrypts message m receiver decrypts message Authentication: sender, receiver want to confirm identity of each other Message Integrity: sender, receiver want to ensure message content not altered (in transit, or afterwards) without detection Access and Availability: services must be accessible and available to users 2

Friends and enemies: Alice, Bob, Trudy r well-known in network security world r Bob,

Friends and enemies: Alice, Bob, Trudy r well-known in network security world r Bob, Alice (lovers!) want to communicate “securely” r Trudy (intruder) may intercept, delete, add messages Alice data channel secure sender Bob data, control messages secure receiver data Trudy 3

Who might Bob, Alice be? r … well, real-life Bobs and Alices! r Web

Who might Bob, Alice be? r … well, real-life Bobs and Alices! r Web browser/server for electronic transactions (e. g. , on-line purchases) r on-line banking client/server r DNS servers r routers exchanging routing table updates r other examples? 4

There are bad guys (and girls) out there! Q: What can a “bad guy”

There are bad guys (and girls) out there! Q: What can a “bad guy” do? A: a lot! m eavesdrop: intercept messages m actively insert messages into connection m impersonation: can fake (spoof) source address in packet (or any field in packet) m hijacking: “take over” ongoing connection by removing sender or receiver, inserting himself in place m denial of service: prevent service from being used by others (e. g. , by overloading resources) more on this later …… 5

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and counter measures 6

The language of cryptography Alice’s K encryption A key plaintext encryption algorithm Bob’s K

The language of cryptography Alice’s K encryption A key plaintext encryption algorithm Bob’s K decryption B key ciphertext decryption plaintext algorithm symmetric key crypto: sender, receiver keys identical public-key crypto: encryption key public, decryption key secret (private) 7

Symmetric key cryptography substitution cipher: substituting one thing for another m monoalphabetic cipher: substitute

Symmetric key cryptography substitution cipher: substituting one thing for another m monoalphabetic cipher: substitute one letter for another plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq E. g. : Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc Q: How hard to break this simple cipher? : q brute force (how hard? ) q other? 8

Symmetric key cryptography KA-B plaintext message, m encryption ciphertext algorithm K (m) A-B decryption

Symmetric key cryptography KA-B plaintext message, m encryption ciphertext algorithm K (m) A-B decryption plaintext algorithm m=K A-B ( KA-B(m) ) symmetric key crypto: Bob and Alice share know same (symmetric) key: K A-B r e. g. , key is knowing substitution pattern in mono alphabetic substitution cipher r Q: how do Bob and Alice agree on key value? 9

Symmetric key crypto: DES: Data Encryption Standard r US encryption standard [NIST 1993] r

Symmetric key crypto: DES: Data Encryption Standard r US encryption standard [NIST 1993] r 56 -bit symmetric key, 64 -bit plaintext input r How secure is DES? m DES Challenge: 56 -bit-key-encrypted phrase (“Strong cryptography makes the world a safer place”) decrypted (brute force) in 4 months m no known “backdoor” decryption approach r making DES more secure: m use three keys sequentially (3 -DES) on each datum m use cipher-block chaining 10

Symmetric key crypto: DES operation initial permutation 16 identical “rounds” of function application, each

Symmetric key crypto: DES operation initial permutation 16 identical “rounds” of function application, each using different 48 bits of key final permutation 11

AES: Advanced Encryption Standard r new symmetric-key NIST standard, replacing DES r processes data

AES: Advanced Encryption Standard r new symmetric-key NIST standard, replacing DES r processes data in 128 bit blocks r 128, 192, or 256 bit keys r brute force decryption (try each key) takes 149 trillion years for AES 12

Public Key Cryptography symmetric key crypto r requires sender, receiver know shared secret key

Public Key Cryptography symmetric key crypto r requires sender, receiver know shared secret key r Q: how to agree on key in first place (particularly if never “met”)? public key cryptography r radically different approach [Diffie. Hellman 76, RSA 78] r sender, receiver do not share secret key r public encryption key known to all r private decryption key known only to receiver 13

Public key cryptography + Bob’s public B key K K plaintext message, m encryption

Public key cryptography + Bob’s public B key K K plaintext message, m encryption ciphertext algorithm + K (m) B - Bob’s private B key decryption plaintext algorithm message + m = K B(K (m)) B 14

Public key encryption algorithms Requirements: 1 2 . . + need K B( )

Public key encryption algorithms Requirements: 1 2 . . + need K B( ) and K - ( ) such that B - + K (K (m)) = m B B + given public key KB , it should be impossible to compute private key K B RSA: Rivest, Shamir, Adelson algorithm 15

RSA: Choosing keys 1. Choose two large prime numbers p, q. (e. g. ,

RSA: Choosing keys 1. Choose two large prime numbers p, q. (e. g. , 1024 bits each) 2. Compute n = pq, z = (p-1)(q-1) 3. Choose e (with e<n) that has no common factors with z. (e, z are “relatively prime”). 4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod z = 1 ). 5. Public key is (n, e). Private key is (n, d). + KB - KB 16

RSA: Encryption, decryption 0. Given (n, e) and (n, d) as computed above 1.

RSA: Encryption, decryption 0. Given (n, e) and (n, d) as computed above 1. To encrypt bit pattern, m, compute e e c = m mod n (i. e. , remainder when m is divided by n) 2. To decrypt received bit pattern, c, compute d m = c d mod n (i. e. , remainder when c is divided by n) Magic d m = (m e mod n) mod n happens! c 17

RSA example: Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively

RSA example: Bob chooses p=5, q=7. Then n=35, z=24. e=5 (so e, z relatively prime). d=29 (so ed-1 exactly divisible by z. encrypt: decrypt: letter m me l 12 1524832 c 17 d c 48196857210675091411825223071697 c = me mod n 17 m = cd mod n letter 12 l 18

RSA: m = (m e mod n) Why is that d mod n Useful

RSA: m = (m e mod n) Why is that d mod n Useful number theory result: If p, q prime and n = pq, then: y y mod (p-1)(q-1) x mod n = x mod n e (m mod n) d mod n = med mod n = m ed mod (p-1)(q-1) mod n (using number theory result above) 1 = m mod n (since we chose ed to be divisible by (p-1)(q-1) with remainder 1 ) = m 19

RSA: another important property The following property will be very useful later: - +

RSA: another important property The following property will be very useful later: - + B B K (K (m)) + = m = K (K (m)) B B use public key first, followed by private key use private key first, followed by public key Result is the same! 20

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and counter measures 21

Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap 1.

Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap 1. 0: Alice says “I am Alice” Failure scenario? ? 22

Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap 1.

Authentication Goal: Bob wants Alice to “prove” her identity to him Protocol ap 1. 0: Alice says “I am Alice” in a network, Bob can not “see” Alice, so Trudy simply declares herself to be Alice 23

Authentication: another try Protocol ap 2. 0: Alice says “I am Alice” in an

Authentication: another try Protocol ap 2. 0: Alice says “I am Alice” in an IP packet containing her source IP address Alice’s “I am Alice” IP address Failure scenario? ? 24

Authentication: another try Protocol ap 2. 0: Alice says “I am Alice” in an

Authentication: another try Protocol ap 2. 0: Alice says “I am Alice” in an IP packet containing her source IP address Alice’s IP address Trudy can create a packet “spoofing” “I am Alice” Alice’s address 25

Authentication: another try Protocol ap 3. 0: Alice says “I am Alice” and sends

Authentication: another try Protocol ap 3. 0: Alice says “I am Alice” and sends her secret password to “prove” it. Alice’s “I’m Alice” IP addr password Alice’s IP addr OK Failure scenario? ? 26

Authentication: another try Protocol ap 3. 0: Alice says “I am Alice” and sends

Authentication: another try Protocol ap 3. 0: Alice says “I am Alice” and sends her secret password to “prove” it. Alice’s “I’m Alice” IP addr password Alice’s IP addr OK playback attack: Trudy records Alice’s packet and later plays it back to Bob Alice’s “I’m Alice” IP addr password 27

Authentication: yet another try Protocol ap 3. 1: Alice says “I am Alice” and

Authentication: yet another try Protocol ap 3. 1: Alice says “I am Alice” and sends her encrypted secret password to “prove” it. Alice’s encrypted “I’m Alice” IP addr password Alice’s IP addr OK Failure scenario? ? 28

Authentication: another try Protocol ap 3. 1: Alice says “I am Alice” and sends

Authentication: another try Protocol ap 3. 1: Alice says “I am Alice” and sends her encrypted secret password to “prove” it. Alice’s encrypted “I’m Alice” IP addr password Alice’s IP addr OK record and playback still works! Alice’s encrypted “I’m Alice” IP addr password 29

Authentication: yet another try Goal: avoid playback attack Nonce: number (R) used only once

Authentication: yet another try Goal: avoid playback attack Nonce: number (R) used only once –in-a-lifetime ap 4. 0: to prove Alice “live”, Bob sends Alice nonce, R. Alice must return R, encrypted with shared secret key “I am Alice” R KA-B(R) Failures, drawbacks? Alice is live, and only Alice knows key to encrypt nonce, so it must be Alice! 30

Authentication: ap 5. 0 ap 4. 0 requires shared symmetric key r can we

Authentication: ap 5. 0 ap 4. 0 requires shared symmetric key r can we authenticate using public key techniques? ap 5. 0: use nonce, public key cryptography “I am Alice” R Bob computes + - - K A (R) “send me your public key” + KA KA(KA (R)) = R and knows only Alice could have the private key, that encrypted R such that + K (K (R)) = R A A 31

ap 5. 0: security hole Man (woman) in the middle attack: Trudy poses as

ap 5. 0: security hole Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice) I am Alice R K (R) T K (R) A Send me your public key + K T Send me your public key + K A - + m = K (K (m)) A A + K (m) A Trudy gets - + m = K (K (m)) T Alice sends T m to + K (m) T encrypted with Alice’s public key 32

ap 5. 0: security hole Man (woman) in the middle attack: Trudy poses as

ap 5. 0: security hole Man (woman) in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to Alice) Difficult to detect: q Bob receives everything that Alice sends, and vice versa. (e. g. , so Bob, Alice can meet one week later and recall conversation) q problem is that Trudy receives all messages as well! 33

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and counter measures 34

Firewalls firewall isolates organization’s internal net from larger Internet, allowing some packets to pass,

Firewalls firewall isolates organization’s internal net from larger Internet, allowing some packets to pass, blocking others. public Internet administered network firewall 35

Firewalls: Why prevent denial of service attacks: m SYN flooding: attacker establishes many bogus

Firewalls: Why prevent denial of service attacks: m SYN flooding: attacker establishes many bogus TCP connections, no resources left for “real” connections. prevent illegal modification/access of internal data. m e. g. , attacker replaces CIA’s homepage with something else allow only authorized access to inside network (set of authenticated users/hosts) two types of firewalls: m application-level m packet-filtering 36

Packet Filtering Should arriving packet be allowed in? Departing packet let out? r internal

Packet Filtering Should arriving packet be allowed in? Departing packet let out? r internal network connected to Internet via router firewall r router filters packet-by-packet, decision to forward/drop packet based on: m m source IP address, destination IP address TCP/UDP source and destination port numbers ICMP message type TCP SYN and ACK bits 37

Packet Filtering r Example 1: block incoming and outgoing datagrams with IP protocol field

Packet Filtering r Example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23. m All incoming and outgoing UDP flows and telnet connections are blocked. r Example 2: Block inbound TCP SYN packets. m Prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside. 38

Application gateways r Filters packets on application data as well as on IP/TCP/UDP fields.

Application gateways r Filters packets on application data as well as on IP/TCP/UDP fields. r Example: allow select internal users to telnet outside. host-to-gateway telnet session application gateway-to-remote host telnet session router and filter 1. Require all telnet users to telnet through gateway. 2. For authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections 3. Router filter blocks all telnet connections not originating from gateway. 39

Limitations of firewalls and gateways r IP spoofing: router can’t know if data “really”

Limitations of firewalls and gateways r IP spoofing: router can’t know if data “really” comes from claimed source r if multiple app’s. need special treatment, each has own app. gateway. r client software must know how to contact gateway. m r filters often use all or nothing policy for UDP. r tradeoff: degree of communication with outside world, level of security r many highly protected sites still suffer from attacks. e. g. , must set IP address of proxy in Web browser 40

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and

Overview What is network security? Principles of cryptography Authentication Access control: firewalls Attacks and counter measures 41

Internet security threats Mapping: m before attacking: “case the joint” – find out what

Internet security threats Mapping: m before attacking: “case the joint” – find out what services are implemented on network m Use ping to determine what hosts have addresses on network m Port-scanning: try to establish TCP connection to each port in sequence Countermeasures? 42

Internet security threats Mapping: countermeasures m record traffic entering network m look for suspicious

Internet security threats Mapping: countermeasures m record traffic entering network m look for suspicious activity (IP addresses, pots being scanned sequentially) 43

Internet security threats Packet sniffing: m broadcast media m promiscuous NIC reads all packets

Internet security threats Packet sniffing: m broadcast media m promiscuous NIC reads all packets passing by m can read all unencrypted data (e. g. passwords) m e. g. : C sniffs B’s packets C A src: B dest: A payload B Countermeasures? 44

Internet security threats Packet sniffing: countermeasures m all hosts in organization run software that

Internet security threats Packet sniffing: countermeasures m all hosts in organization run software that checks periodically if host interface in promiscuous mode. m one host per segment of broadcast media (switched Ethernet at hub) C A src: B dest: A payload B 45

Internet security threats IP Spoofing: m can generate “raw” IP packets directly from application,

Internet security threats IP Spoofing: m can generate “raw” IP packets directly from application, putting any value into IP source address field m receiver can’t tell if source is spoofed m e. g. : C pretends to be B C A src: B dest: A Countermeasures? payload B 46

Internet security threats IP Spoofing: ingress filtering m routers should not forward outgoing packets

Internet security threats IP Spoofing: ingress filtering m routers should not forward outgoing packets with invalid source addresses (e. g. , datagram source address not in router’s network) m great, but ingress filtering can not be mandated for all networks C A src: B dest: A payload B 47

Internet security threats Denial of service (DOS): m flood of maliciously generated packets “swamp”

Internet security threats Denial of service (DOS): m flood of maliciously generated packets “swamp” receiver m Distributed DOS (DDOS): multiple coordinated sources swamp receiver m e. g. , C and remote host SYN-attack A C A SYN SYN SYN B Countermeasures? SYN 48

Internet security threats Denial of service (DOS): countermeasures m filter out flooded packets (e.

Internet security threats Denial of service (DOS): countermeasures m filter out flooded packets (e. g. , SYN) before reaching host: throw out good with bad m traceback to source of floods (most likely an innocent, compromised machine) C A SYN SYN SYN B SYN 49