High Energy Neutrino Astronomy Gisela Anton LAUNCH 09

  • Slides: 40
Download presentation
High Energy Neutrino Astronomy Gisela Anton LAUNCH 09 Heidelberg, November 10 th, 2009

High Energy Neutrino Astronomy Gisela Anton LAUNCH 09 Heidelberg, November 10 th, 2009

Content • Introduction to high energy neutrino astronomy • Neutrino-Telescopes: Ice. Cube and ANTARES

Content • Introduction to high energy neutrino astronomy • Neutrino-Telescopes: Ice. Cube and ANTARES • Selected results • Future perspectives of Ice. Cube und KM 3 Ne. T Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 2

Messengers of the high energy universe Cosmic ray spectrum g e p g n

Messengers of the high energy universe Cosmic ray spectrum g e p g n g p n Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 3

The high energy universe Supernova Remnant Microquasar (SN 1006, optiical, radio, X-ray) (artists view)

The high energy universe Supernova Remnant Microquasar (SN 1006, optiical, radio, X-ray) (artists view) Active Galactic Nuclei Gamma-ray Burst (artists view) (GRB 080319 B, X-Ray, SWIFT) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 4

Production mechanisms Acceleration of particles • Shock front (Fermi-acceleration) • Objects with strong magnetic

Production mechanisms Acceleration of particles • Shock front (Fermi-acceleration) • Objects with strong magnetic fields (pulsars, magnetars) Beam dump (secondary particles) • Interaction of high energy particles with photons or matter - Protons: pion production and decay p + p(γ) → π± + X μ + νμ e + νμ + νe p + p(γ) → π0 + X γ + γ (Te. V) - Electrons: inverse Compton-Scattering of Photons e + γ(low energy) → e + γ (Te. V) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 5

Estimated neutrino fluxes (SNR) • Photon ↔ neutrino connection: p + p → π0

Estimated neutrino fluxes (SNR) • Photon ↔ neutrino connection: p + p → π0 + X γ+γ p + p → π± + X μ + νμ e + νμ + νe • Observed from RX J 1713. 7– 3946: - γ-rays up to several 10 Te. V RX J 1713. 7– 3946 → particle acceleration up to 100 Te. V and above • Calculated neutrino fluxes: For strong sources: 10 -12– 10 -11 Te. V-1 cm-2 s-1 @ 1 Te. V AK, Hinton, Stegmann, Aharonian, Ap. J (2006) Halzen, AK, O’Murchadha, PRD (2008) Kistler, Beacom, PRD (2006). . . Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 AK, Hinton, Stegmann, Aharonian, Ap. J (2006) 6

Neutrinos as cosmic messengers • Neutrinos point back to sources • Neutrinos travel cosmological

Neutrinos as cosmic messengers • Neutrinos point back to sources • Neutrinos travel cosmological distances • Neutrinos escape dense sources • Neutrinos are related to hadron acceleration • Neutrinos complement high energy proton and gamma observation Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 7

Detection of Neutrinos muon cascade nuclear reaction Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03.

Detection of Neutrinos muon cascade nuclear reaction Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 νμ 8

Background: atmospheric muons and neutrinos p μ νμ background cosmic νμ μ νμ cosmic

Background: atmospheric muons and neutrinos p μ νμ background cosmic νμ μ νμ cosmic rays atmosphere p • Flux from above dominated by atmospheric muons • Neutrino telescopes mainly sensitive to neutrinos from below Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 9

Sky visibility in neutrinos above Horizon below Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03.

Sky visibility in neutrinos above Horizon below Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 10

Neutrino Telescopes: Baikal, Ice. Cube and ANTARES Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03.

Neutrino Telescopes: Baikal, Ice. Cube and ANTARES Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 11

Baikal NT 200+ • NT 200 • 8 strings (192 optical modules) • Instrumented

Baikal NT 200+ • NT 200 • 8 strings (192 optical modules) • Instrumented volume 1× 10 -4 km 3 • Running since 1998 • NT 200+ • NT 200 + 3 outer strings (36 optical modules) • Instrumented volume 0. 004 km 3 • Running since 2005 Single storey Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 12

Sky coverage Visibility Ice. Cube (Southpole) 100% 0% Visibility ANTARES (Mediterranean Sea) > 75%

Sky coverage Visibility Ice. Cube (Southpole) 100% 0% Visibility ANTARES (Mediterranean Sea) > 75% 2 25% – 75% < 25% Te. V γ-Sources galactic extragalactic Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 13

Ice. Cube at the Southpole Ice. Cube Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03.

Ice. Cube at the Southpole Ice. Cube Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 14

I Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November

I Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 15

ANTARES in the Mediterranean Shore station Main cable (45 km) Alexander Kappes, LAUNCH DPG-Frühjahrstagung,

ANTARES in the Mediterranean Shore station Main cable (45 km) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 17

ANTARES 2100 m • 12 Lines (885 PMTs) • Completion May 2008 • Instrumented

ANTARES 2100 m • 12 Lines (885 PMTs) • Completion May 2008 • Instrumented volume: ~0. 01 km 3 2475 m Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 18

Position determination for PMTs • Lines moving in the sea current • Acoutic positioning

Position determination for PMTs • Lines moving in the sea current • Acoutic positioning system + tiltmeter and compasses: Dx < 10 cm • Monitoring of the positioning with laser pulses 0. 5 ns -4 -3 -2 -1 0 1 2 3 4 Time measured – calculated (ns) Laser Precision ~0. 5 ns = 10 cm Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 19

Median rate (k. Hz) Optical Background Mar. ’ 06 Sept. ’ 06 Mar. ’

Median rate (k. Hz) Optical Background Mar. ’ 06 Sept. ’ 06 Mar. ’ 07 Sep. ’ 07 Mar. ’ 08 Optical background due to 40 K-decay and bioluminescense • Typical rate per PMT 60 -100 k. Hz • Additional short bursts and periods with higher rates Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 20

Selected Results Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg,

Selected Results Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 21

ANTARES: Atmospheric Myons & Neutrinos ANTARES (173 days) up going: ν-induced myons Alexander Kappes,

ANTARES: Atmospheric Myons & Neutrinos ANTARES (173 days) up going: ν-induced myons Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 down going: atm. myons 22

Ice. Cube: the shadow of the moon • Need of calibration source for proof

Ice. Cube: the shadow of the moon • Need of calibration source for proof of detector pointing capability and resolution • Nature offers deficit of muons from direction of the Moon - Diameter of the Moon 0. 5° Angular resolution - Ice. Cube 80 -String < 1° - ANTARES < 0. 5° Dec rel. moon • First observation of the Moon shadow with Ice. Cube 40 -String data RA relative to moon position A. Karle @ ICRC 2009 Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 23

Search for point sources – Ice. Cube 40 strings (6 months) Background: atm. neutrinos

Search for point sources – Ice. Cube 40 strings (6 months) Background: atm. neutrinos (6796 events) Preliminary (10981 events) Background: atm. muons Most-significant spot: all-sky background probability: 61% Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 24 Significance

Point source sensitivities 90% CL sensitivity for E-2 spectra (preliminary) MACRO (6 years) Super-K.

Point source sensitivities 90% CL sensitivity for E-2 spectra (preliminary) MACRO (6 years) Super-K. (4. 5 years) AMANDA (3. 8 years) ANTARES: 12 lines 1 year (pred. sensitivity) Ice. Cube: Ice. Cube 40 Strings 330 days (sensitivity) Ice. Cube 80 Strings 1 yr (pred. sensitivity) Flux predictions Halzen, AK, O’Murchadha, PRD (2008) AK, Hinton, Stegmann, Aharonian, Ap. J (2006) Kistler, Beacom, PRD (2006) Costantini & Vissani, App (2005) . . . Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 25

Gamma-Ray Bursts Fireball model Ee. V neutrinos Te. V neutrinos Precursor ~-100 s T

Gamma-Ray Bursts Fireball model Ee. V neutrinos Te. V neutrinos Precursor ~-100 s T 0 Prompt ~100 s > 1000 s triggered Search • Sensitivity gain due to time and direction of burst measured by satellites • Low number of events per GRB expected➞ “Burst-Stacking” Un-triggered Search • Possible large population of “choked“ GRBs; unvisible in γ-rays • Search for excess of events in time and direction Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 26

Limits on neutrino fluxes from GRBs • Baikal NT 200+ (155 GRBs) Baikal (Avrorin

Limits on neutrino fluxes from GRBs • Baikal NT 200+ (155 GRBs) Baikal (Avrorin et al. , ar. Xiv: 0910. 4327) Ice. Cube Amanda • Ice. Cube 22 -Strings (41 GRBs) (Abbasi et al, ar. Xiv: 0907. 2227) • AMANDA (417 GRBs) (Achterberg et al. (2008) Ap. J 674, 357) precursor prompt predictions precursor: Meszaros & Waxman, PRL (2001) prompt: Ice. Cube, AK et al. , ICRC 2009 • Perspectives: • 200 – 300 GRBs per year (Fermi, SWIFT) • Ice. Cube will be able to detect predicted fluxes within next years Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 27

Optical Follow-Up • First proposed by M. Kowalski (Kowalski and Mohr (2007), App 27,

Optical Follow-Up • First proposed by M. Kowalski (Kowalski and Mohr (2007), App 27, 533) SN/GRB neutrino telescope send alert robotic optical telescopes • Ice. Cube: cooperation with ROTSE (4 telescopes) • Antares: cooperation with TAROT (2 telescopes) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 28

Dark Matter Searches (WIMPs) • Neutralino (χ) good WIMP candidate • Gravitational capture in

Dark Matter Searches (WIMPs) • Neutralino (χ) good WIMP candidate • Gravitational capture in the Sun + self annihilation χ ν ν • Neutrino rate only depends on scattering cross section (equilibrium between capture and annihilation) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 29

WIMP searches } MSSM models Direct detection experiments (CDMS, COUPP, KIMS) AMANDA 7 years

WIMP searches } MSSM models Direct detection experiments (CDMS, COUPP, KIMS) AMANDA 7 years soft hard Super-Kamiokande (2004) ` Ice. Cube 22 -strings limits (PRL 102, 201302 (2009)) soft hard Ice. Cube 86 with Deep Core Sensitivity 1 yr (prel. , hard) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 30

Expected Neutrino Events from Dark Matter Annihilation in ANTARES Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München,

Expected Neutrino Events from Dark Matter Annihilation in ANTARES Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009

Further Physics Point Sources: • Variable Sources - Extragalactic n-source candidates are non persistent

Further Physics Point Sources: • Variable Sources - Extragalactic n-source candidates are non persistent - Time search window given for instance by γ-ray signals reduction of background • Target of opportunity: 2 neutrinos within Dt from same direction send alert to optical telescope for follow up Other Topics: • Supernovae (Me. V neutrinos) • Neutrino oszillation (atmospheric neutrinos 10 - 100 Ge. V) • Exotic physics (Lorentz symmetry violation, monopoles, . . . ) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 33

Perspectives with Ice. Cube und KM 3 Ne. T Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München,

Perspectives with Ice. Cube und KM 3 Ne. T Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 34

Future of Neutrino-Astronomy • Ice. Cube: compared to AMANDA (7 years) factor 25 increased

Future of Neutrino-Astronomy • Ice. Cube: compared to AMANDA (7 years) factor 25 increased sensitivity Spiering, HGF review, 2009 - larger detector + data quality - accumulated data - improved analysis methods • Ice. Cube is in the region of realistic discovery potential, but - flux estimates indicate that Ice. Cube is at the edge of the interesting region - Ice. Cube covers only have of the sky Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 35

KM 3 Ne. T • km 3 -scale neutrino telescope in the Mediterranean (

KM 3 Ne. T • km 3 -scale neutrino telescope in the Mediterranean ( and infrastructure for marine and Earth science) • Common effort of ANTARES, NEMO and NESTOR pilot projects + Institutes from marine science and oceanographic technologies • On the Roadmap of the European Strategy Forum for Research Infrastructures (ESFRI) • EU financed Design Study (2006 -2009) Artists view • EU financed Preparatory Phase (2008 -2012) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 36

Flexible tower with horizontal bars 6 m • Semi-rigid system of horizontal elements (storeys):

Flexible tower with horizontal bars 6 m • Semi-rigid system of horizontal elements (storeys): • 20 storeys 40 m • Each storey supports 6 OMs in groups of 2 • Storeys interlinked by tensioning ropes, subsequent storeys orthogonal to each other • Power and data cables separated from ropes Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 37

OM with many small PMTs • 31 3 -inch PMTs in 17 -inch glass

OM with many small PMTs • 31 3 -inch PMTs in 17 -inch glass sphere (cathode area ~3 x 10” PMTs) - 19 in lower, 12 in upper hemisphere - Suspended by compressible foam core • 31 PMT bases (D) (total ~140 m. W) • Front-end electronics (B, C) A B • Al cooling shield and stem (A) C • Single penetrator • 2 mm optical gel (ANTARES-type) Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 D PMT 38 C

KM 3 Ne. T Point Source Sensitivity (3 years) Aharens et al. Astr. Phys.

KM 3 Ne. T Point Source Sensitivity (3 years) Aharens et al. Astr. Phys. (2004) – binned method KM 3 Ne. T (binned/unb. ) Ice. Cube R. Abbasi et al. Astro-ph (2009) scaled – unbinned method Average value of sensitivity from R. Abbasi et al. Astro-ph (2009) Typical fluxes Observed Galactic Te. V-γ sources (SNR, unidentified, microquasars) Aharonian et al. Rep. Prog. Phys. (2008), Abdo et al. , Ap. J 658 L 33 -L 36 (2007) Estimated costs: ~100 MEuro (+10% man power) Note: Double sensitivity for about double price. . . Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 39

KM 3 Ne. T Timeline • Next steps: Prototyping and design decisions • organized

KM 3 Ne. T Timeline • Next steps: Prototyping and design decisions • organized in Preparatory Phase framework • final decisions require site selection • expected to be achieved in ~18 months 17 20 15 20 20 20 12 13 ar M 20 11 00 9 ct 2 O 20 08 ar M Fe b 20 06 • Timeline: Design Study Preparatory Phase Construction phase Data taking phase CDR TDR Design decision Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 40

Summary • High energy neutrinos deliver complementary information to gamma photons and protons •

Summary • High energy neutrinos deliver complementary information to gamma photons and protons • ANTARES completed , Ice. Cube 70% installed, KM 3 Ne. T in design phase • No cosmological high energy neutrinos observed yet • Ice. Cube will enter the region with discovery potential • KM 3 Ne. T will exceed Ice. Cube Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 41

Thank you for your attention muon cascade nuclear reaction Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München,

Thank you for your attention muon cascade nuclear reaction Alexander Kappes, LAUNCH DPG-Frühjahrstagung, München, 12. 03. 2009 Gisela Anton, 09, Heidelberg, November 10 th, 2009 νμ 42