Computer Network http www csie ntu edu twnetwork

  • Slides: 69
Download presentation
Computer Network (http: //www. csie. ntu. edu. tw/~network 2006/) q Instructor m m Ai-Chun

Computer Network (http: //www. csie. ntu. edu. tw/~network 2006/) q Instructor m m Ai-Chun Pang 逄愛君, acpang@csie. ntu. edu. tw Office Number: 417 q Textbook m “Computer Networking: A Top Down Approach Featuring the Internet, ” 3 rd edition, Jim Kurose and Keith Ross, Addison. Wesley. q Requirements m Assignment x 2 40% m Mid-term exam 20% m Final exam 20% m Term project 20% q TAs (1: 00~3: 00 pm, Tuesday) m 吳延年 (sam@csie. ntu. edu. tw, Office Number: 219) m 廖承賦 (lcf@voip. csie. ntu. edu. tw, Office Number: 442) m 汪振宇 (jeenyeu@voip. csie. ntu. edu. tw, Office Number: 442) Introduction 1

Chapter 1: Introduction Our goal: Overview: q get “feel” and q what’s the Internet

Chapter 1: Introduction Our goal: Overview: q get “feel” and q what’s the Internet terminology q more depth, detail later in course q approach: m use Internet as example q what’s a protocol? q network edge q network core q access net, physical media q Internet/ISP structure q performance: loss, delay q protocol layers, service models q network modeling Introduction 2

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 3

What’s the Internet: “nuts and bolts” view q millions of connected computing devices: hosts

What’s the Internet: “nuts and bolts” view q millions of connected computing devices: hosts = end systems q running network apps q communication links m m router server workstation mobile local ISP fiber, copper, radio, satellite transmission rate = bandwidth regional ISP q routers: forward packets (chunks of data) company network Introduction 4

What’s the Internet: “nuts and bolts” view q protocols control sending, receiving of msgs

What’s the Internet: “nuts and bolts” view q protocols control sending, receiving of msgs m e. g. , TCP, IP, HTTP, FTP, PPP q Internet: “network of router server workstation mobile local ISP networks” m m loosely hierarchical public Internet versus private intranet q Internet standards m RFC: Request for comments m IETF: Internet Engineering Task Force regional ISP company network Introduction 5

What’s the Internet: a service view q communication infrastructure enables distributed applications: m Web,

What’s the Internet: a service view q communication infrastructure enables distributed applications: m Web, email, games, ecommerce, file sharing q communication services provided to apps: m m Connectionless unreliable connection-oriented reliable Introduction 6

What’s a protocol? human protocols: q “what’s the time? ” q “I have a

What’s a protocol? human protocols: q “what’s the time? ” q “I have a question” q introductions … specific msgs sent … specific actions taken when msgs received, or other events network protocols: q machines rather than humans q all communication activity in Internet governed by protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt Introduction 7

What’s a protocol? a human protocol and a computer network protocol: Hi TCP connection

What’s a protocol? a human protocol and a computer network protocol: Hi TCP connection req Hi TCP connection response Got the time? Get http: //www. awl. com/kurose-ross 2: 00 <file> time Q: Other human protocols? Introduction 8

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 9

A closer look at network structure: q network edge: applications and hosts q network

A closer look at network structure: q network edge: applications and hosts q network core: m routers m network of networks q access networks, physical media: communication links Introduction 10

The network edge: q end systems (hosts): m m m run application programs e.

The network edge: q end systems (hosts): m m m run application programs e. g. Web, email at “edge of network” q client/server model m m client host requests, receives service from always-on server e. g. Web browser/server; email client/server q peer-peer model: m m minimal (or no) use of dedicated servers e. g. Ka. Za. A Introduction 11

Network edge: connection-oriented service Goal: data transfer between end systems q handshaking: setup (prepare

Network edge: connection-oriented service Goal: data transfer between end systems q handshaking: setup (prepare for) data transfer ahead of time m m Hello, hello back human protocol set up “state” in two communicating hosts q TCP - Transmission Control Protocol m Internet’s connectionoriented service TCP service [RFC 793] q reliable, in-order byte- stream data transfer m loss: acknowledgements and retransmissions q flow control: m sender won’t overwhelm receiver q congestion control: m senders “slow down sending rate” when network congested Introduction 12

Network edge: connectionless service Goal: data transfer between end systems m same as before!

Network edge: connectionless service Goal: data transfer between end systems m same as before! q UDP - User Datagram Protocol [RFC 768]: m connectionless m unreliable data transfer m no flow control m no congestion control App’s using TCP: q HTTP (Web), FTP (file transfer), Telnet (remote login), SMTP (email) App’s using UDP: q streaming media, teleconferencing, DNS, Internet telephony Introduction 13

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 14

The Network Core q mesh of interconnected routers q the fundamental question: how is

The Network Core q mesh of interconnected routers q the fundamental question: how is data transferred through net? m circuit switching: dedicated circuit per call: telephone net m packet-switching: data sent thru net in discrete “chunks” Introduction 15

Network Core: Circuit Switching End-end resources reserved for “call” q link bandwidth, switch capacity

Network Core: Circuit Switching End-end resources reserved for “call” q link bandwidth, switch capacity q dedicated resources: no sharing q circuit-like (guaranteed) performance q call setup required Introduction 16

Network Core: Circuit Switching network resources (e. g. , bandwidth) divided into “pieces” q

Network Core: Circuit Switching network resources (e. g. , bandwidth) divided into “pieces” q pieces allocated to calls q dividing link bandwidth into “pieces” m frequency division m time division q resource piece idle if not used by owning call (no sharing) Introduction 17

Circuit Switching: FDM and TDM Example: FDM 4 users frequency time TDM frequency time

Circuit Switching: FDM and TDM Example: FDM 4 users frequency time TDM frequency time Introduction 18

Numerical example q How long does it take to send a file of 640,

Numerical example q How long does it take to send a file of 640, 000 bits from host A to host B over a circuit-switched network? m All links are 1. 536 Mbps m Each link uses TDM with 24 slots m 500 msec to establish end-to-end circuit Work it out! Introduction 19

Network Core: Packet Switching each end-end data stream divided into packets q user A,

Network Core: Packet Switching each end-end data stream divided into packets q user A, B packets share network resources q each packet uses full link bandwidth q resources used as needed Bandwidth division into “pieces” Dedicated allocation Resource reservation resource contention: q aggregate resource demand can exceed amount available q congestion: packets queue, wait for link use q store and forward: packets move one hop at a time m Node receives complete packet before forwarding Introduction 20

Packet Switching: Statistical Multiplexing 10 Mb/s Ethernet A B statistical multiplexing C 1. 5

Packet Switching: Statistical Multiplexing 10 Mb/s Ethernet A B statistical multiplexing C 1. 5 Mb/s queue of packets waiting for output link D E Sequence of A & B packets does not have fixed pattern statistical multiplexing. Introduction 21

Packet switching versus circuit switching Packet switching allows more users to use network! q

Packet switching versus circuit switching Packet switching allows more users to use network! q 1 Mb/s link q each user: m 100 kb/s when “active” m active 10% of time q circuit-switching: m 10 users N users 1 Mbps link q packet switching: m with 35 users, probability > 10 active less than. 0004 Introduction 22

Packet switching versus circuit switching Is packet switching a “slam dunk winner? ” q

Packet switching versus circuit switching Is packet switching a “slam dunk winner? ” q Great for bursty data m resource sharing m simpler, no call setup q Excessive congestion: packet delay and loss m protocols needed for reliable data transfer, congestion control q Q: How to provide circuit-like behavior? m bandwidth guarantees needed for audio/video apps m still an unsolved problem Introduction 23

Packet-switching: store-and-forward L R q Takes L/R seconds to R transmit (push out) packet

Packet-switching: store-and-forward L R q Takes L/R seconds to R transmit (push out) packet of L bits on to link (R bps) q Entire packet must arrive at router before it can be transmitted on next link: store and forward q delay = 3 L/R R Example: q L = 7. 5 Mbits q R = 1. 5 Mbps q delay = 15 sec Introduction 24

Packet-switched networks: forwarding q Goal: move packets through routers from source to destination m

Packet-switched networks: forwarding q Goal: move packets through routers from source to destination m we’ll study several path selection (i. e. routing) algorithms (chapter 4) q datagram network: m destination address in packet determines next hop m routes may change during session m analogy: driving, asking directions q virtual circuit network: m each packet carries tag (virtual circuit ID), tag determines next hop m fixed path determined at call setup time, remains fixed thru call m routers maintain per-call state Introduction 25

Network Taxonomy Telecommunication networks Circuit-switched networks FDM TDM Packet-switched networks Networks with VCs Datagram

Network Taxonomy Telecommunication networks Circuit-switched networks FDM TDM Packet-switched networks Networks with VCs Datagram Networks • Datagram network is not either connection-oriented or connectionless. • Internet provides both connection-oriented (TCP) and connectionless services (UDP) to apps. Introduction 26

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 27

Access networks and physical media Q: How to connect end systems to edge router?

Access networks and physical media Q: How to connect end systems to edge router? q residential access nets q institutional access networks (school, company) q mobile access networks Keep in mind: q bandwidth (bits per second) of access network? q shared or dedicated? Introduction 28

Residential access: point to point access q Dialup via modem m up to 56

Residential access: point to point access q Dialup via modem m up to 56 Kbps direct access to router (often less) m Can’t surf and phone at same time: can’t be “always on” q ADSL: asymmetric digital subscriber line m up to 1 Mbps upstream (today typically < 256 kbps) m up to 8 Mbps downstream (today typically < 1 Mbps) m FDM: 50 k. Hz - 1 MHz for downstream 4 k. Hz - 50 k. Hz for upstream 0 k. Hz - 4 k. Hz for ordinary telephone Introduction 29

Residential access: cable modems q HFC: hybrid fiber coaxial m asymmetric: up to 30

Residential access: cable modems q HFC: hybrid fiber coaxial m asymmetric: up to 30 Mbps downstream, 2 Mbps upstream q network of cable and fiber attaches homes to ISP router m homes share access to router q deployment: available via cable TV companies Introduction 30

Cable Network Architecture: Overview Typically 500 to 5, 000 homes cable headend cable distribution

Cable Network Architecture: Overview Typically 500 to 5, 000 homes cable headend cable distribution network (simplified) home Introduction 31

Cable Network Architecture: Overview cable headend cable distribution network (simplified) home Introduction 32

Cable Network Architecture: Overview cable headend cable distribution network (simplified) home Introduction 32

Cable Network Architecture: Overview server(s) cable headend cable distribution network home Introduction 33

Cable Network Architecture: Overview server(s) cable headend cable distribution network home Introduction 33

Cable Network Architecture: Overview FDM: V I D E O V I D E

Cable Network Architecture: Overview FDM: V I D E O V I D E O D A T A C O N T R O L 1 2 3 4 5 6 7 8 9 Channels cable headend cable distribution network home Introduction 34

Company access: local area networks q company/univ local area network (LAN) connects end system

Company access: local area networks q company/univ local area network (LAN) connects end system to edge router q Ethernet: m shared or dedicated link connects end system and router m 10 Mbs, 100 Mbps, Gigabit Ethernet q LANs: chapter 5 Introduction 35

Wireless access networks q shared wireless access network connects end system to router m

Wireless access networks q shared wireless access network connects end system to router m via base station aka “access point” q wireless LANs: m 802. 11 b (Wi. Fi): 11 Mbps q wider-area wireless access m provided by telco operator m 3 G ~ 384 kbps • Will it happen? ? m WAP/GPRS in Europe router base station mobile hosts Introduction 36

Home networks Typical home network components: q ADSL or cable modem q router/firewall/NAT q

Home networks Typical home network components: q ADSL or cable modem q router/firewall/NAT q Ethernet q wireless access point to/from cable headend cable modem router/ firewall Ethernet wireless laptops wireless access point Introduction 37

Physical Media q Bit: propagates between transmitter/rcvr pairs q physical link: what lies between

Physical Media q Bit: propagates between transmitter/rcvr pairs q physical link: what lies between transmitter & receiver q guided media: m signals propagate in solid media: copper, fiber, coax Twisted Pair (TP) q two insulated copper wires m m Category 3: traditional phone wires, 10 Mbps Ethernet Category 5: 100 Mbps Ethernet q unguided media: m signals propagate freely, e. g. , radio Introduction 38

Physical Media: coax, fiber Coaxial cable: q two concentric copper conductors q bidirectional q

Physical Media: coax, fiber Coaxial cable: q two concentric copper conductors q bidirectional q baseband: m m single channel on cable legacy Ethernet q broadband: m multiple channel on cable m HFC Fiber optic cable: q glass fiber carrying light pulses, each pulse a bit q high-speed operation: m high-speed point-to-point transmission (e. g. , 5 Gps) q low error rate: repeaters spaced far apart ; immune to electromagnetic noise Introduction 39

Physical media: radio q signal carried in electromagnetic spectrum q no physical “wire” q

Physical media: radio q signal carried in electromagnetic spectrum q no physical “wire” q bidirectional q propagation environment effects: m m m reflection obstruction by objects interference Radio link types: q terrestrial microwave m e. g. up to 45 Mbps channels q LAN (e. g. , Wifi) m 2 Mbps, 11 Mbps q wide-area (e. g. , cellular) m e. g. 3 G: hundreds of kbps q satellite m up to 50 Mbps channel (or multiple smaller channels) m 270 msec end-end delay Introduction 40

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 41

Internet structure: network of networks q roughly hierarchical q at center: “tier-1” ISPs (e.

Internet structure: network of networks q roughly hierarchical q at center: “tier-1” ISPs (e. g. , UUNet, BBN/Genuity, Sprint, AT&T), national/international coverage m treat each other as equals Tier-1 providers interconnect (peer) privately Tier 1 ISP NAP Tier-1 providers also interconnect at public network access points (NAPs) Tier 1 ISP Introduction 42

Tier-1 ISP: e. g. , Sprint US backbone network Introduction 43

Tier-1 ISP: e. g. , Sprint US backbone network Introduction 43

Internet structure: network of networks q “Tier-2” ISPs: smaller (often regional) ISPs m Connect

Internet structure: network of networks q “Tier-2” ISPs: smaller (often regional) ISPs m Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet q tier-2 ISP is customer of tier-1 provider Tier-2 ISP Tier 1 ISP Tier-2 ISP NAP Tier 1 ISP Tier-2 ISPs also peer privately with each other, interconnect at NAP Tier-2 ISP Introduction 44

Internet structure: network of networks q “Tier-3” ISPs and local ISPs m last hop

Internet structure: network of networks q “Tier-3” ISPs and local ISPs m last hop (“access”) network (closest to end systems) local ISP Local and tier 3 ISPs are customers of higher tier ISPs connecting them to rest of Internet Tier 3 ISP Tier-2 ISP local ISP Tier-2 ISP Tier 1 ISP Tier-2 ISP local ISP NAP Tier 1 ISP Tier-2 ISP local ISP Introduction 45

Internet structure: network of networks q a packet passes through many networks! local ISP

Internet structure: network of networks q a packet passes through many networks! local ISP Tier 3 ISP Tier-2 ISP local ISP Tier-2 ISP Tier 1 ISP Tier-2 ISP local ISP NAP Tier 1 ISP Tier-2 ISP local ISP Introduction 46

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 47

How do loss and delay occur? packets queue in router buffers q packet arrival

How do loss and delay occur? packets queue in router buffers q packet arrival rate to link exceeds output link capacity q packets queue, wait for turn packet being transmitted (delay) A B packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers Introduction 48

Four sources of packet delay q 1. nodal processing: m check bit errors m

Four sources of packet delay q 1. nodal processing: m check bit errors m determine output link q 2. queueing m time waiting at output link for transmission m depends on congestion level of router transmission A propagation B nodal processing queueing Introduction 49

Delay in packet-switched networks 3. Transmission delay: q R=link bandwidth (bps) q L=packet length

Delay in packet-switched networks 3. Transmission delay: q R=link bandwidth (bps) q L=packet length (bits) q time to send bits into link = L/R transmission A 4. Propagation delay: q d = length of physical link q s = propagation speed in medium (~2 x 108 m/sec) q propagation delay = d/s Note: s and R are very different quantities! propagation B nodal processing queueing Introduction 50

Caravan analogy 100 km ten-car caravan toll booth q Cars “propagate” at 100 km/hr

Caravan analogy 100 km ten-car caravan toll booth q Cars “propagate” at 100 km/hr q Toll booth takes 12 sec to service a car (transmission time) q car~bit; caravan ~ packet q Q: How long until caravan is lined up before 2 nd toll booth? 100 km toll booth q Time to “push” entire caravan through toll booth onto highway = 12*10 = 120 sec q Time for last car to propagate from 1 st to 2 nd toll both: 100 km/(100 km/hr)= 1 hr q A: 62 minutes Introduction 51

Caravan analogy (more) 100 km ten-car caravan toll booth q Cars now “propagate” at

Caravan analogy (more) 100 km ten-car caravan toll booth q Cars now “propagate” at 1000 km/hr q Toll booth now takes 1 min to service a car q Q: Will cars arrive to 2 nd booth before all cars serviced at 1 st booth? 100 km toll booth q Yes! After 7 min, 1 st car at 2 nd booth and 3 cars still at 1 st booth. q 1 st bit of packet can arrive at 2 nd router before packet is fully transmitted at 1 st router! Introduction 52

Nodal delay q dproc = processing delay m typically a few microsecs or less

Nodal delay q dproc = processing delay m typically a few microsecs or less q dqueue = queuing delay m depends on congestion q dtrans = transmission delay m = L/R, significant for low-speed links q dprop = propagation delay m a few microsecs to hundreds of msecs Introduction 53

Queueing delay (revisited) q R=link bandwidth (bps) q L=packet length (bits) q a=average packet

Queueing delay (revisited) q R=link bandwidth (bps) q L=packet length (bits) q a=average packet arrival rate traffic intensity = La/R q La/R ~ 0: average queueing delay small q La/R -> 1: delays become large q La/R > 1: more “work” arriving than can be serviced, average delay infinite! Introduction 54

“Real” Internet delays and routes q What do “real” Internet delay & loss look

“Real” Internet delays and routes q What do “real” Internet delay & loss look like? q Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i: m m m sends three packets that will reach router i on path towards destination router i will return packets to sender times interval between transmission and reply. 3 probes Introduction 55

“Real” Internet delays and routes traceroute: gaia. cs. umass. edu to www. eurecom. fr

“Real” Internet delays and routes traceroute: gaia. cs. umass. edu to www. eurecom. fr Three delay measements from gaia. cs. umass. edu to cs-gw. cs. umass. edu 1 cs-gw (128. 119. 240. 254) 1 ms 2 border 1 -rt-fa 5 -1 -0. gw. umass. edu (128. 119. 3. 145) 1 ms 2 ms 3 cht-vbns. gw. umass. edu (128. 119. 3. 130) 6 ms 5 ms 4 jn 1 -at 1 -0 -0 -19. wor. vbns. net (204. 147. 132. 129) 16 ms 11 ms 13 ms 5 jn 1 -so 7 -0 -0 -0. wae. vbns. net (204. 147. 136) 21 ms 18 ms 6 abilene-vbns. abilene. ucaid. edu (198. 32. 11. 9) 22 ms 18 ms 22 ms 7 nycm-wash. abilene. ucaid. edu (198. 32. 8. 46) 22 ms trans-oceanic 8 62. 40. 103. 253 (62. 40. 103. 253) 104 ms 109 ms 106 ms link 9 de 2 -1. de. geant. net (62. 40. 96. 129) 109 ms 102 ms 104 ms 10 de. fr 1. fr. geant. net (62. 40. 96. 50) 113 ms 121 ms 114 ms 11 renater-gw. fr 1. fr. geant. net (62. 40. 103. 54) 112 ms 114 ms 112 ms 12 nio-n 2. cssi. renater. fr (193. 51. 206. 13) 111 ms 114 ms 116 ms 13 nice. cssi. renater. fr (195. 220. 98. 102) 123 ms 125 ms 124 ms 14 r 3 t 2 -nice. cssi. renater. fr (195. 220. 98. 110) 126 ms 124 ms 15 eurecom-valbonne. r 3 t 2. ft. net (193. 48. 50. 54) 135 ms 128 ms 133 ms 16 194. 211. 25 (194. 211. 25) 126 ms 128 ms 126 ms 17 * * means no response (probe lost, router not replying) 18 * * * 19 fantasia. eurecom. fr (193. 55. 113. 142) 132 ms 128 ms 136 ms Introduction 56

Packet loss q queue (aka buffer) has finite capacity q when packet arrives to

Packet loss q queue (aka buffer) has finite capacity q when packet arrives to full queue, packet is dropped (aka lost) q lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all Introduction 57

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 58

Protocol “Layers” Networks are complex! q many “pieces”: m hosts m routers m links

Protocol “Layers” Networks are complex! q many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware, software Question: Is there any hope of organizing structure of network? Or at least our discussion of networks? Introduction 59

Organization of air travel ticket (purchase) ticket (complain) baggage (check) baggage (claim) gates (load)

Organization of air travel ticket (purchase) ticket (complain) baggage (check) baggage (claim) gates (load) gates (unload) runway takeoff runway landing airplane routing q a series of steps Introduction 60

Layering of airline functionality ticket (purchase) ticket (complain) ticket baggage (check) baggage (claim baggage

Layering of airline functionality ticket (purchase) ticket (complain) ticket baggage (check) baggage (claim baggage gates (load) gates (unload) gate runway (takeoff) runway (land) takeoff/landing airplane routing departure airport airplane routing intermediate air-traffic control centers arrival airport Layers: each layer implements a service m via its own internal-layer actions m relying on services provided by layer below Introduction 61

Why layering? Dealing with complex systems: q explicit structure allows identification, relationship of complex

Why layering? Dealing with complex systems: q explicit structure allows identification, relationship of complex system’s pieces m layered reference model for discussion q modularization eases maintenance, updating of system m change of implementation of layer’s service transparent to rest of system m e. g. , change in gate procedure doesn’t affect rest of system q layering considered harmful? Introduction 62

Internet protocol stack q application: supporting network applications m FTP, SMTP, HTTP application q

Internet protocol stack q application: supporting network applications m FTP, SMTP, HTTP application q transport: host-host data transfer m TCP, UDP transport q network: routing of datagrams from network source to destination m IP, routing protocols q link: data transfer between neighboring network elements m link physical PPP, Ethernet q physical: bits “on the wire” Introduction 63

source message segment Ht datagram Hn Ht frame Hl Hn Ht M M Encapsulation

source message segment Ht datagram Hn Ht frame Hl Hn Ht M M Encapsulation application transport network link physical Hl Hn Ht M switch destination M Ht M Hn Ht Hl Hn Ht M M application transport network link physical Hn Ht Hl Hn Ht M M router Introduction 64

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1.

Chapter 1: roadmap 1. 1 What is the Internet? 1. 2 Network edge 1. 3 Network core 1. 4 Network access and physical media 1. 5 Internet structure and ISPs 1. 6 Delay & loss in packet-switched networks 1. 7 Protocol layers, service models 1. 8 History Introduction 65

Internet History 1961 -1972: Early packet-switching principles q 1961: Kleinrock - queueing theory shows

Internet History 1961 -1972: Early packet-switching principles q 1961: Kleinrock - queueing theory shows effectiveness of packetswitching q 1964: Baran - packetswitching in military nets q 1967: ARPAnet conceived by Advanced Research Projects Agency q 1969: first ARPAnet node operational q 1972: m m ARPAnet demonstrated publicly NCP (Network Control Protocol) first host protocol first e-mail program ARPAnet has 15 nodes Introduction 66

Internet History 1972 -1980: Internetworking, new and proprietary nets q 1970: ALOHAnet satellite q

Internet History 1972 -1980: Internetworking, new and proprietary nets q 1970: ALOHAnet satellite q q q network in Hawaii 1973: Metcalfe’s Ph. D thesis proposes Ethernet 1974: Cerf and Kahn architecture for interconnecting networks late 70’s: proprietary architectures: DECnet, SNA, XNA late 70’s: switching fixed length packets (ATM precursor) 1979: ARPAnet has 200 nodes Cerf and Kahn’s internetworking principles: m minimalism, autonomy no internal changes required to interconnect networks m best effort service model m stateless routers m decentralized control define today’s Internet architecture Introduction 67

Internet History 1990, 2000’s: commercialization, the Web, new apps q Early 1990’s: ARPAnet decommissioned

Internet History 1990, 2000’s: commercialization, the Web, new apps q Early 1990’s: ARPAnet decommissioned q 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995) q early 1990 s: Web m hypertext [Bush 1945, Nelson 1960’s] m HTML, HTTP: Berners-Lee m 1994: Mosaic, later Netscape m late 1990’s: commercialization Late 1990’s – 2000’s: q more killer apps: instant messaging, P 2 P file sharing q network security to forefront q est. 50 million host, 100 million+ users q backbone links running at Gbps of the Web Introduction 68

Introduction: Summary Covered a “ton” of material! q Internet overview q what’s a protocol?

Introduction: Summary Covered a “ton” of material! q Internet overview q what’s a protocol? q network edge, core, access network m packet-switching versus circuit-switching q Internet/ISP structure q performance: loss, delay q layering and service models q history You now have: q context, overview, “feel” of networking q more depth, detail to follow! Introduction 69