Top Properties Measurements in ATLAS Mohsen Khakzad Carleton

  • Slides: 17
Download presentation
Top Properties Measurements in ATLAS Mohsen Khakzad Carleton University (On behalf of the ATLAS

Top Properties Measurements in ATLAS Mohsen Khakzad Carleton University (On behalf of the ATLAS Collaboration) Contents: Nov. 1, 2006 ➢ Introduction ➢ Top properties ➢ tt channels ➢ Single Top channels ➢ Conclusions Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 1

Cross-sections at LHC Low lumi = 10 fb-1/y Process (pb) N/s N/year Total collected

Cross-sections at LHC Low lumi = 10 fb-1/y Process (pb) N/s N/year Total collected before start of LHC W l 3 104 30 108 104 LEP / 107 FNAL Z ee 1. 5 103 1. 5 107 LEP 1 107 104 Tevatron 106 1013 109 Belle/Ba. Bar tt 830 bb 5 108 ATLAS: ~95% gg ~15% ~5% qq (Opposite @ FNAL) ~85% LHC is a top factory Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 2

LARGE HADRON COLLIDER at CERN Initial L (2007) ~1028 cm-2 s-1 Low L (2008)

LARGE HADRON COLLIDER at CERN Initial L (2007) ~1028 cm-2 s-1 Low L (2008) ~1032 cm-2 s-1 ~1 fb-1/year Design L (2009) • LHC provides: Ø PP Collisions at 14 Te. V CME Ø Constituent energies of 1 -2 Te. V Nov. 1, 2006 • Proton-Proton 1034 cm-2 s-1 100 fb-1/year collisions: Ø Maximum Luminosity of 10+34 cm-2 s-1 Ø Bunch spacing of 25 ns Ø 23 Events/Crossing DPF 2006, Hawaii (Mohsen Khakzad) 3

The Atlas Detector Three main sub-systems: 1) Inner Tracking System § Pixel Detector §

The Atlas Detector Three main sub-systems: 1) Inner Tracking System § Pixel Detector § Semiconductor Tracker § Transition Radiation Tracker 2) Calorimeter Barrel Carlorimeter § § 3) Ø Liquid Argon Electromagnetic Ø Hadronic (Tile-Calorimeter) 2 Liquid Argon End Caps Ø Electromagnetic (Pb) Ø Hadronic (Cu) Ø Forward Calorimeter (Cu, W) Muon Spectrometer § Large Air-core toroid (0. 5 T) § Monitored Drift Tubes and CSC § P Diameter Barrel toroid length Overall weight 25 m 26 m 46 m 7000 Tons Trigger: TGC and RPC Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 4

Top physics: Motivations W helicity Top Mass n n Top quark pair production (tt)

Top physics: Motivations W helicity Top Mass n n Top quark pair production (tt) – cross-section – Search for resonances – spin correlations (10 fb-1) – Probing the Wtb vertex (30 fb-1) – Flavor changing neutral currents (FCNC) Electroweak Single top production – Single top cross-sections – Determination of Vtb (30 fb-1) – W and Top polarization (10 fb-1) l+ Top Width Production cross-section Resonance production Top Spin W+ Top Charge Anomalous Couplings CP violation n t Production kinematics Top Spin Polarization b _ Y t Rare/non SM Decays X Branching Ratios |Vtb| Top quark physics also important for Higgs Discovery! Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 5

Top Spin and polarization studies (ref : ATL-PHYS-2000 -017) n Top lifetime is very

Top Spin and polarization studies (ref : ATL-PHYS-2000 -017) n Top lifetime is very short: Γt = 1. 42 Ge. V → t = 0. 44 x 10 -24 s – Top decays before losing spin information n Production and decay of the top can be extracted through the study of Polarization effects. n The Top quark polarization can be studied through the angular distribution of the decay products! daughter i spin θi Particle i : spin analyzing power of daughter particle i (-1 to 1) i Top quark decays before it can hadronize Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 6

tt spin correlation (cont’d) n n tt are unpolarized but are correlated by spin

tt spin correlation (cont’d) n n tt are unpolarized but are correlated by spin Spin of quarks can be evaluated in the helicity basis 1 d. N N dcosf = 1 ( 1 – A a a cosf ) D X X´ 2 SM ; or top spin ≠ 1/2, anomalous coupling, t H+b Semilep. + dilep. (10 fb-1) mt = 175 Ge. V LHC SM A=0. 42 A=0. 33 ( 0. 014 0. 023) 0. 023 AD=-0. 29 ( 0. 008 0. 010) 0. 010 AD=-0. 24 Mtt<550 Ge. V Nov. 1, 2006 § Syst. dominated by b-JES, top mass and FSR § ~4% precision on spin correlation parameters DPF 2006, Hawaii (Mohsen Khakzad) 7

W polarization in top decay n Polarization of W in top decay is divided

W polarization in top decay n Polarization of W in top decay is divided in: longitudinal, left-handed, right-handed Top decay : major source of longitudinal W’s – SM: Only longitudinal and left-handed W’s can be produced in the top rest frame. n Polarization depends only on Mt and MW (LO) 1/N d. N/dcos n F 0 + FL + FR F 0 FL n b t W+ cos l+ Longitudinal W+ (F 0) Standard Model (Mtop=175 Ge. V) NLO Sensitive to EWSB Nov. 1, 2006 0. 703 0. 695 l+ Left-handed W+ (FL) Right-handed W+ (FR) 0. 297 0. 304 0. 000 0. 001 Test of V-A structure DPF 2006, Hawaii (Mohsen Khakzad) 8

W polarization in top decay (cont’d) (ref: Eur. Phys. J. C 44 S 2

W polarization in top decay (cont’d) (ref: Eur. Phys. J. C 44 S 2 2005 13 -33) MC (Top. Rex) Semilep. Standard Model S+B, 10 fb -1 (mt = 175) F 0 FL F 0=0. 699 FL=0. 299 FR=0. 002 FR 0. 703 0. 004 0. 015 0. 297 0. 003 0. 024 0. 000 0. 003 0. 012 10 fb-1 precision (±stat ±syst) 0. 005 0. 023 0. 003 0. 028 0. 003 0. 013 • Syst ( Ebjet, mt, FSR ) • ATLAS can measure W polarization component F 0 with an accuracy ~3% and FR with a precision ~1. 3% in 1 LHC year (10 fb-1) Measurements largely dominated by systematics! Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 9

Top Quark Yukawa Coupling n top quark Yukawa coupling yt can be measured from

Top Quark Yukawa Coupling n top quark Yukawa coupling yt can be measured from tt H production yt n large value of mt has led to proposals of alternate mechanisms [eg. topcolor suggests most of mt due to new strong dynamics] Ø would like to measure yt directly n for m. H < 130 Ge. V, H bb is dominant decay ( tt. H final state is WWbbbb) Ø look for events with one W l , the other W jj Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 10

Top Quark Yukawa Coupling (cont’d) (ref: ATL-PHYS-98 -132) n Reconstruct H bb for mass

Top Quark Yukawa Coupling (cont’d) (ref: ATL-PHYS-98 -132) n Reconstruct H bb for mass distribution L=30 fb-1 H→bb L=100 fb-1 n For Higgs masses up to ~130 Ge. V, can reach statistical errors on yt < 10% with high luminosity – Systematics can be studied by comparing tt H production with tt Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 11

n n n BR n Flavor Changing Neutral Currents (FCNC) In SM, FCNC top

n n n BR n Flavor Changing Neutral Currents (FCNC) In SM, FCNC top decays are highly suppressed (Br < 10 -13 - 10 -10) The top quark almost always decays to a b quark, B(t Wb)~1 B(t Ws)<0. 18%, B(t Wd)<0. 02% (other decays are really rare) Any observation of FCNC indication of New Physics! Process 95% CL (today) LHC 95% CL (10 fb-1) LHC 5 (10 fb-1) t Zq ~ 0. 1 (LEP) 3 x 10 -4 5 x 10 -4 t g q ~ 0. 01 (HERA) 7 x 10 -5 1 x 10 -4 t gq ~ 0. 2 (TEV. ) 1 x 10 -3 5 x 10 -3 n (ref: hep-ph/0409342 APPB 35(2004)2695) Reconstruct t Zq (l+l-)j Huge QCD background Discovery potential (5 ) according to ATLAS studies for 100 fb-1 t Hq Nov. 1, 2006 Br: 4. 5 X 10 -3 2. 4 X 10 -3 (m. H = 115 Ge. V, H bb) (m. H = 160 Ge. V, H WW*) DPF 2006, Hawaii (Mohsen Khakzad) 12

Single Top Cross section The production of single top quark via EW interaction has

Single Top Cross section The production of single top quark via EW interaction has yet to be observed! Vtb Vtb t-channel W* (s-channel) ~ 250 pb ~70 pb ~ 10 pb Powerful Probe of Vtb ( d. Vtb/Vtb~few% @ LHC ) Theoretical uncertainties: • Quark-gluon luminosity inside b-quark (PDF) • Renormalization scale (m) • top mass (Dmt=4. 3 Ge. V (W*) changed by 3%) Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 13

Single Top Cross section (cont’d) (ref: ATL-COM-PHYS-2006 -002) 1 lepton, p. T>25 Ge. V/c

Single Top Cross section (cont’d) (ref: ATL-COM-PHYS-2006 -002) 1 lepton, p. T>25 Ge. V/c High Missing ET 2 jets (at least 1 b-jet) Common feature: L=30 fb-1 t-channel: Nov. 1, 2006 ( d / <1. 5%) S/B = 3 Wt-channel: ( d / ~ 4%) S/B = 1/7 s-channel: ( d / ~7 -8%) S/B = 0. 2 DPF 2006, Hawaii (Mohsen Khakzad) 14

Determination of Vtb n SM prediction : Vtb an element of CKM matrix ~

Determination of Vtb n SM prediction : Vtb an element of CKM matrix ~ 1 n tt pairs : SM-dependent measurement (ref: SN-ATLAS-2000 -017 SN-ATLAS-2001 -007) – Confirm three-generation structure – Look for exotic top decays – Estimate of n Electroweak single top : direct measurement – σ |Vtb|² n Results for 30 fb-1 3 years at low luminosity : Channel Selected events S/B W* 900 Wg 49000 Nov. 1, 2006 Uncertainties on σ ΔVtb/Vtb statistics theory 0. 55 5. 6% 7. 5% 4. 7% 2. 3 0. 54% 11% 5. 5% DPF 2006, Hawaii (Mohsen Khakzad) 15

Conclusions q LHC has great potential for top physics q Earliest LHC physics results

Conclusions q LHC has great potential for top physics q Earliest LHC physics results and sensitivity to new physics could come from top physics! è See talk by Frank Fiedler è Fully understand the full simulations and NLO generators, especially in the early data taking q First steps towards precision measurements driven by systematics § Challenge to get: § the errors on top mass ~1 Ge. V § SM MH constrained to <30% § Test top production and its decay by measuring: § W polarization ~1 -2% § top spin correlation ~4% § anomalous t. Wb/gtt couplings, t H+b, FCNC, … Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 16

Conclusion cont’d Electroweak physics QCD top Higgs or new physics Top is still a

Conclusion cont’d Electroweak physics QCD top Higgs or new physics Top is still a unique window on particle physics! From John Womersley Nov. 1, 2006 DPF 2006, Hawaii (Mohsen Khakzad) 17