Materials Properties Electrical properties Magnetic properties Optical properties
![Materials Properties • Electrical properties • Magnetic properties • Optical properties Materials Properties • Electrical properties • Magnetic properties • Optical properties](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-1.jpg)
![Electrical properties • • Ohm’s law Resistance, resistivity, conductivity • Matthiessen’s rule Electrical properties • • Ohm’s law Resistance, resistivity, conductivity • Matthiessen’s rule](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-2.jpg)
![Electrical resistivity Electrical resistivity](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-3.jpg)
![Energy bands discrete energy levels (Pauli exclusion principle) K L M splitting into energy Energy bands discrete energy levels (Pauli exclusion principle) K L M splitting into energy](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-4.jpg)
![Electron Band Structures energy conduction band gap EF valence band EF metal (e. g. Electron Band Structures energy conduction band gap EF valence band EF metal (e. g.](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-5.jpg)
![Conductors EF Conductors EF](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-6.jpg)
![Semiconductors (intrinsic) band gap Semiconductors (intrinsic) band gap](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-7.jpg)
![n-type Extrinsic Semiconductor n-type Extrinsic Semiconductor](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-8.jpg)
![p-type Extrinsic Semiconductor p-type Extrinsic Semiconductor](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-9.jpg)
![The p-n Diode reverse bias forward bias The p-n Diode reverse bias forward bias](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-10.jpg)
![Magnetic properties • Magnetic field strength, magnetic flux density, magnetization, permeability, and magnetic susceptibility Magnetic properties • Magnetic field strength, magnetic flux density, magnetization, permeability, and magnetic susceptibility](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-11.jpg)
![The Magnetic Field vacuum atmosphere/material The Magnetic Field vacuum atmosphere/material](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-12.jpg)
![The Magnetic Moment orbital contribution => mlµB Bohr magneton: µB=9. 27 x 10 -24 The Magnetic Moment orbital contribution => mlµB Bohr magneton: µB=9. 27 x 10 -24](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-13.jpg)
![Diamagnetic Materials Diamagnetic Materials](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-14.jpg)
![Paramagnetic Materials Paramagnetic Materials](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-15.jpg)
![Ferromagnetic Materials Ferromagnetic Materials](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-16.jpg)
![The B-H Hysteresis remanent flux density coercive force The B-H Hysteresis remanent flux density coercive force](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-17.jpg)
![Hard and Soft Magnetic Materials soft: alternating magnetic fields hard: permanent magnets energy product Hard and Soft Magnetic Materials soft: alternating magnetic fields hard: permanent magnets energy product](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-18.jpg)
![Magnetic Storage magnetic field: induces electric current coil: magnetic field in gap Magnetic Storage magnetic field: induces electric current coil: magnetic field in gap](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-19.jpg)
![Optical properties • Transmission • Refraction • Absorption Optical properties • Transmission • Refraction • Absorption](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-20.jpg)
![Electro magnetic waves light = electromagnetic wave electric field E magnetic field H (perpendicular Electro magnetic waves light = electromagnetic wave electric field E magnetic field H (perpendicular](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-21.jpg)
![Light Interaction with Solid I 0=Itransmitted+Iabsorbed+Ireflected transparent translucent opaque heat reflection (metals): absorption (electrons Light Interaction with Solid I 0=Itransmitted+Iabsorbed+Ireflected transparent translucent opaque heat reflection (metals): absorption (electrons](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-22.jpg)
![Absorption Itransmitted=I 0(1 -R)2 exp(-bx) reflectivity Ireflected absorption coefficient Iabsorbed Io x (transparent medium) Absorption Itransmitted=I 0(1 -R)2 exp(-bx) reflectivity Ireflected absorption coefficient Iabsorbed Io x (transparent medium)](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-23.jpg)
![Photon Absorption in a (Semiconducting) Solid 1. hole/electron pair generation 2. hole/electron pair generation Photon Absorption in a (Semiconducting) Solid 1. hole/electron pair generation 2. hole/electron pair generation](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-24.jpg)
![Light Transmission in Al 2 O 3 single crystal: transparent poly-crystal: translucent with 5% Light Transmission in Al 2 O 3 single crystal: transparent poly-crystal: translucent with 5%](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-25.jpg)
![Effects/Applications luminescence absorbing energy => re-emitting visible light (1. 8 e. V<hv<3. 1 e. Effects/Applications luminescence absorbing energy => re-emitting visible light (1. 8 e. V<hv<3. 1 e.](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-26.jpg)
![Laser Concepts (light amplification by stimulated emission of radiation) 1. 2. 3. 4. Xe Laser Concepts (light amplification by stimulated emission of radiation) 1. 2. 3. 4. Xe](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-27.jpg)
- Slides: 27
![Materials Properties Electrical properties Magnetic properties Optical properties Materials Properties • Electrical properties • Magnetic properties • Optical properties](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-1.jpg)
Materials Properties • Electrical properties • Magnetic properties • Optical properties
![Electrical properties Ohms law Resistance resistivity conductivity Matthiessens rule Electrical properties • • Ohm’s law Resistance, resistivity, conductivity • Matthiessen’s rule](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-2.jpg)
Electrical properties • • Ohm’s law Resistance, resistivity, conductivity • Matthiessen’s rule
![Electrical resistivity Electrical resistivity](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-3.jpg)
Electrical resistivity
![Energy bands discrete energy levels Pauli exclusion principle K L M splitting into energy Energy bands discrete energy levels (Pauli exclusion principle) K L M splitting into energy](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-4.jpg)
Energy bands discrete energy levels (Pauli exclusion principle) K L M splitting into energy bands (N=12)
![Electron Band Structures energy conduction band gap EF valence band EF metal e g Electron Band Structures energy conduction band gap EF valence band EF metal (e. g.](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-5.jpg)
Electron Band Structures energy conduction band gap EF valence band EF metal (e. g. Cu) metal (e. g. Mg) isolators (Egap>2 e. V) semiconductors
![Conductors EF Conductors EF](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-6.jpg)
Conductors EF
![Semiconductors intrinsic band gap Semiconductors (intrinsic) band gap](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-7.jpg)
Semiconductors (intrinsic) band gap
![ntype Extrinsic Semiconductor n-type Extrinsic Semiconductor](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-8.jpg)
n-type Extrinsic Semiconductor
![ptype Extrinsic Semiconductor p-type Extrinsic Semiconductor](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-9.jpg)
p-type Extrinsic Semiconductor
![The pn Diode reverse bias forward bias The p-n Diode reverse bias forward bias](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-10.jpg)
The p-n Diode reverse bias forward bias
![Magnetic properties Magnetic field strength magnetic flux density magnetization permeability and magnetic susceptibility Magnetic properties • Magnetic field strength, magnetic flux density, magnetization, permeability, and magnetic susceptibility](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-11.jpg)
Magnetic properties • Magnetic field strength, magnetic flux density, magnetization, permeability, and magnetic susceptibility
![The Magnetic Field vacuum atmospherematerial The Magnetic Field vacuum atmosphere/material](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-12.jpg)
The Magnetic Field vacuum atmosphere/material
![The Magnetic Moment orbital contribution mlµB Bohr magneton µB9 27 x 10 24 The Magnetic Moment orbital contribution => mlµB Bohr magneton: µB=9. 27 x 10 -24](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-13.jpg)
The Magnetic Moment orbital contribution => mlµB Bohr magneton: µB=9. 27 x 10 -24 Am² spin contribution => +/-µB
![Diamagnetic Materials Diamagnetic Materials](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-14.jpg)
Diamagnetic Materials
![Paramagnetic Materials Paramagnetic Materials](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-15.jpg)
Paramagnetic Materials
![Ferromagnetic Materials Ferromagnetic Materials](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-16.jpg)
Ferromagnetic Materials
![The BH Hysteresis remanent flux density coercive force The B-H Hysteresis remanent flux density coercive force](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-17.jpg)
The B-H Hysteresis remanent flux density coercive force
![Hard and Soft Magnetic Materials soft alternating magnetic fields hard permanent magnets energy product Hard and Soft Magnetic Materials soft: alternating magnetic fields hard: permanent magnets energy product](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-18.jpg)
Hard and Soft Magnetic Materials soft: alternating magnetic fields hard: permanent magnets energy product coercivity
![Magnetic Storage magnetic field induces electric current coil magnetic field in gap Magnetic Storage magnetic field: induces electric current coil: magnetic field in gap](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-19.jpg)
Magnetic Storage magnetic field: induces electric current coil: magnetic field in gap
![Optical properties Transmission Refraction Absorption Optical properties • Transmission • Refraction • Absorption](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-20.jpg)
Optical properties • Transmission • Refraction • Absorption
![Electro magnetic waves light electromagnetic wave electric field E magnetic field H perpendicular Electro magnetic waves light = electromagnetic wave electric field E magnetic field H (perpendicular](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-21.jpg)
Electro magnetic waves light = electromagnetic wave electric field E magnetic field H (perpendicular to E) wave: c=ln (const. light velocity in vacuum=300, 000 photons: E=hn (Planck constant, 6. 63 x 10 -34 J/s)
![Light Interaction with Solid I 0ItransmittedIabsorbedIreflected transparent translucent opaque heat reflection metals absorption electrons Light Interaction with Solid I 0=Itransmitted+Iabsorbed+Ireflected transparent translucent opaque heat reflection (metals): absorption (electrons](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-22.jpg)
Light Interaction with Solid I 0=Itransmitted+Iabsorbed+Ireflected transparent translucent opaque heat reflection (metals): absorption (electrons excitation by DE) => re-emission of photons color (e. g. Au, Cu => only partial re-emission) refraction: transmission into transparent material => decrease in v (n=c/v), bending at interface
![Absorption ItransmittedI 01 R2 expbx reflectivity Ireflected absorption coefficient Iabsorbed Io x transparent medium Absorption Itransmitted=I 0(1 -R)2 exp(-bx) reflectivity Ireflected absorption coefficient Iabsorbed Io x (transparent medium)](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-23.jpg)
Absorption Itransmitted=I 0(1 -R)2 exp(-bx) reflectivity Ireflected absorption coefficient Iabsorbed Io x (transparent medium) Itransmitted
![Photon Absorption in a Semiconducting Solid 1 holeelectron pair generation 2 holeelectron pair generation Photon Absorption in a (Semiconducting) Solid 1. hole/electron pair generation 2. hole/electron pair generation](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-24.jpg)
Photon Absorption in a (Semiconducting) Solid 1. hole/electron pair generation 2. hole/electron pair generation in between colored!! Egap, max=hc/lmin (>3. 1 e. V no visible light absorption=transparent) e. g. red ruby Al 2 O 3 with Cr 2 O 3 Egap, min (lmax, visible=700 nm) (<1. 8 e. V all visible light impurity levelabsorbed=opaque) in the band gap
![Light Transmission in Al 2 O 3 single crystal transparent polycrystal translucent with 5 Light Transmission in Al 2 O 3 single crystal: transparent poly-crystal: translucent with 5%](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-25.jpg)
Light Transmission in Al 2 O 3 single crystal: transparent poly-crystal: translucent with 5% pores: opaque internal reflection/refraction at grain/phase boundaries – pores polymers: scattering at boundaries betw. crystalline/amorphous regions
![EffectsApplications luminescence absorbing energy reemitting visible light 1 8 e Vhv3 1 e Effects/Applications luminescence absorbing energy => re-emitting visible light (1. 8 e. V<hv<3. 1 e.](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-26.jpg)
Effects/Applications luminescence absorbing energy => re-emitting visible light (1. 8 e. V<hv<3. 1 e. V) fluorescence (<1 s) phosphorescence (>1 s) e. g. TV (fluoresc. coating) LED (forward bias diode – recombination=> light) photoconductivity illumination => generation of charge carriers e. g. light meters, solar cells optical fibres 1/0 impulses – high information density 24000 telephone calls by two wires e. g. 30000 kg Cu corresp. to 0. 1 kg high-purified Si. O 2 glass
![Laser Concepts light amplification by stimulated emission of radiation 1 2 3 4 Xe Laser Concepts (light amplification by stimulated emission of radiation) 1. 2. 3. 4. Xe](https://slidetodoc.com/presentation_image_h2/0544cab4b3f17e45fbbfbd01291db167/image-27.jpg)
Laser Concepts (light amplification by stimulated emission of radiation) 1. 2. 3. 4. Xe flash lamp excite electrons from Cr 3+ ions large number of electrons falls back to intermediate state after approx. 3 ms: spontaneous emission – triggers avalanche of emissions photons parallel to the rod are transmitted to the semi-silvered end monochromatic, high-intensity coherent red beam
Magnetic materials used in electrical machines
Tyndall effect is an optical property.
Optical properties of engineering materials
Disadvantages of current transformer
Remanent magnetization
Units of magnetic flux density
Magnetic moment and magnetic field relation
Magnetic force particle
Distinguish between magnetic and nonmagnetic materials
Distinguish between magnetic and nonmagnetic materials
Whats a magnet
What are the materials
Electrical wiring materials
Unit 33 electrical principles and wiring materials
Natural materials
Useful to harmful materials
Man made map
Differentiate adopting materials and adapting materials
Direct materials budget with multiple materials
Optical properties of metals and nonmetals
Optical properties of minerals
Properties of amino acids
Perpendicular
Inherent optical properties
Magnetic properties of lanthanides
Magnetic properties of nanomaterials
Properties of nerve fibres
Electrical properties of matter