Materials Properties Electrical properties Magnetic properties Optical properties

  • Slides: 27
Download presentation
Materials Properties • Electrical properties • Magnetic properties • Optical properties

Materials Properties • Electrical properties • Magnetic properties • Optical properties

Electrical properties • • Ohm’s law Resistance, resistivity, conductivity • Matthiessen’s rule

Electrical properties • • Ohm’s law Resistance, resistivity, conductivity • Matthiessen’s rule

Electrical resistivity

Electrical resistivity

Energy bands discrete energy levels (Pauli exclusion principle) K L M splitting into energy

Energy bands discrete energy levels (Pauli exclusion principle) K L M splitting into energy bands (N=12)

Electron Band Structures energy conduction band gap EF valence band EF metal (e. g.

Electron Band Structures energy conduction band gap EF valence band EF metal (e. g. Cu) metal (e. g. Mg) isolators (Egap>2 e. V) semiconductors

Conductors EF

Conductors EF

Semiconductors (intrinsic) band gap

Semiconductors (intrinsic) band gap

n-type Extrinsic Semiconductor

n-type Extrinsic Semiconductor

p-type Extrinsic Semiconductor

p-type Extrinsic Semiconductor

The p-n Diode reverse bias forward bias

The p-n Diode reverse bias forward bias

Magnetic properties • Magnetic field strength, magnetic flux density, magnetization, permeability, and magnetic susceptibility

Magnetic properties • Magnetic field strength, magnetic flux density, magnetization, permeability, and magnetic susceptibility

The Magnetic Field vacuum atmosphere/material

The Magnetic Field vacuum atmosphere/material

The Magnetic Moment orbital contribution => mlµB Bohr magneton: µB=9. 27 x 10 -24

The Magnetic Moment orbital contribution => mlµB Bohr magneton: µB=9. 27 x 10 -24 Am² spin contribution => +/-µB

Diamagnetic Materials

Diamagnetic Materials

Paramagnetic Materials

Paramagnetic Materials

Ferromagnetic Materials

Ferromagnetic Materials

The B-H Hysteresis remanent flux density coercive force

The B-H Hysteresis remanent flux density coercive force

Hard and Soft Magnetic Materials soft: alternating magnetic fields hard: permanent magnets energy product

Hard and Soft Magnetic Materials soft: alternating magnetic fields hard: permanent magnets energy product coercivity

Magnetic Storage magnetic field: induces electric current coil: magnetic field in gap

Magnetic Storage magnetic field: induces electric current coil: magnetic field in gap

Optical properties • Transmission • Refraction • Absorption

Optical properties • Transmission • Refraction • Absorption

Electro magnetic waves light = electromagnetic wave electric field E magnetic field H (perpendicular

Electro magnetic waves light = electromagnetic wave electric field E magnetic field H (perpendicular to E) wave: c=ln (const. light velocity in vacuum=300, 000 photons: E=hn (Planck constant, 6. 63 x 10 -34 J/s)

Light Interaction with Solid I 0=Itransmitted+Iabsorbed+Ireflected transparent translucent opaque heat reflection (metals): absorption (electrons

Light Interaction with Solid I 0=Itransmitted+Iabsorbed+Ireflected transparent translucent opaque heat reflection (metals): absorption (electrons excitation by DE) => re-emission of photons color (e. g. Au, Cu => only partial re-emission) refraction: transmission into transparent material => decrease in v (n=c/v), bending at interface

Absorption Itransmitted=I 0(1 -R)2 exp(-bx) reflectivity Ireflected absorption coefficient Iabsorbed Io x (transparent medium)

Absorption Itransmitted=I 0(1 -R)2 exp(-bx) reflectivity Ireflected absorption coefficient Iabsorbed Io x (transparent medium) Itransmitted

Photon Absorption in a (Semiconducting) Solid 1. hole/electron pair generation 2. hole/electron pair generation

Photon Absorption in a (Semiconducting) Solid 1. hole/electron pair generation 2. hole/electron pair generation in between colored!! Egap, max=hc/lmin (>3. 1 e. V no visible light absorption=transparent) e. g. red ruby Al 2 O 3 with Cr 2 O 3 Egap, min (lmax, visible=700 nm) (<1. 8 e. V all visible light impurity levelabsorbed=opaque) in the band gap

Light Transmission in Al 2 O 3 single crystal: transparent poly-crystal: translucent with 5%

Light Transmission in Al 2 O 3 single crystal: transparent poly-crystal: translucent with 5% pores: opaque internal reflection/refraction at grain/phase boundaries – pores polymers: scattering at boundaries betw. crystalline/amorphous regions

Effects/Applications luminescence absorbing energy => re-emitting visible light (1. 8 e. V<hv<3. 1 e.

Effects/Applications luminescence absorbing energy => re-emitting visible light (1. 8 e. V<hv<3. 1 e. V) fluorescence (<1 s) phosphorescence (>1 s) e. g. TV (fluoresc. coating) LED (forward bias diode – recombination=> light) photoconductivity illumination => generation of charge carriers e. g. light meters, solar cells optical fibres 1/0 impulses – high information density 24000 telephone calls by two wires e. g. 30000 kg Cu corresp. to 0. 1 kg high-purified Si. O 2 glass

Laser Concepts (light amplification by stimulated emission of radiation) 1. 2. 3. 4. Xe

Laser Concepts (light amplification by stimulated emission of radiation) 1. 2. 3. 4. Xe flash lamp excite electrons from Cr 3+ ions large number of electrons falls back to intermediate state after approx. 3 ms: spontaneous emission – triggers avalanche of emissions photons parallel to the rod are transmitted to the semi-silvered end monochromatic, high-intensity coherent red beam