Gas Condensing Technology Markus Telian Director Marketing und

  • Slides: 26
Download presentation
Gas Condensing Technology Markus Telian Director - Marketing und Development Heating Technology Division H

Gas Condensing Technology Markus Telian Director - Marketing und Development Heating Technology Division H 2 O Hovalwerk AG 01. 09. 2002 1

Gas Condensing Technology Content Hovalwerk AG Ø Physical basics Ø Combustion Ø Efficiency Ø

Gas Condensing Technology Content Hovalwerk AG Ø Physical basics Ø Combustion Ø Efficiency Ø State of the art in boiler technology 01. 09. 2002 2

Gas Condensing Technology Energy sources and their carbon / hydrogen ratio H C C

Gas Condensing Technology Energy sources and their carbon / hydrogen ratio H C C C C H C C C H H C coal Coronen H: C = 0. 5 : 1 C 4 H 8 H C C H H H Propane H H C C C H C 3 H 6 H H H oil H H H H H Butane H H C H C C H Decan H: C = 2 : 1 H C C C C C H H H C H H Natural gas Methan H: C = 4 : 1 H H Hovalwerk AG 01. 09. 2002 3

Gas Condensing Technology CO 2 -formation of different energy sources in kg CO 2

Gas Condensing Technology CO 2 -formation of different energy sources in kg CO 2 / k. Wh fuel input lignite wood coal oil natural gas 0. 40 Hovalwerk AG 0. 36 0. 33 01. 09. 2002 0. 26 0. 20 4

Gas Condensing Technology CO 2 - production by comparison old or new. . .

Gas Condensing Technology CO 2 - production by comparison old or new. . . in kg CO 2 / k. Wh useful energy 0, 40 0, 31 0, 29 0, 25 old Oil hges = 0. 65 Hovalwerk AG old new hges = 0. 65 hges = 0. 90 N. Gas 100% old combustion engineering Oil new Oil Condensing hges = 1. 04 01. 09. 2002 0, 22 new N. Gas hges = 0. 90 0, 18 48% optimized combustion engineering new Gas Condensing hges = 1. 09 5

Gas Condensing Technology Fuels Physical basics for condensation firing fuel oil or gas Fuel

Gas Condensing Technology Fuels Physical basics for condensation firing fuel oil or gas Fuel Oil Gross calorific value(Ho) 12. 56 k. Wh/kg 11. 14 k. Wh/m 3 net calorific value (Hu) 11. 80 k. Wh/kg 10. 06 k. Wh/m 3 0. 76 k. Wh/kg 1. 08 k. Wh/m 3 theoretical condensing power generation (Ho-Hu) theoretical accrual condensing water 1, 3 kg HEL 1. 6 m 3/ Erdgas H steam dew point 47°C 56°C acidity - p. H-value ~2 -4 ~3 - 5 at Lambda 1. 2 Hovalwerk AG Natural Gas 01. 09. 2002 6

Gas Condensing Technology Combustion of 1 m 3 natural gas Chemical reactions: O C

Gas Condensing Technology Combustion of 1 m 3 natural gas Chemical reactions: O C O = CO 2 H O H = H 2 O (carbon dioxid) (water vapour) H O S O = SO 2 (sulphur dioxid) CO 2+ 2 H 2 O Schematic representation Hovalwerk AG gas CH 4 After the combustion 01. 09. 2002 H C H H 7

Gas Condensing Technology Wherein lie the most important savings of energy? a) Lowering the

Gas Condensing Technology Wherein lie the most important savings of energy? a) Lowering the flue gas temperature Conventional boiler: flue gas temperature 140 °C up to 190 °C Condensing boiler: flue gas temperature 5 K up to 20 K above return temp. approxmimate value: Reduction of the flue gas temperature by 20 K gives an increase of the efficiency of 1%. b) Condensation fo the water steam in the flue gas (latent heat: 0. 66 k. Wh/kg condensate) Hovalwerk AG 01. 09. 2002 8

Gas Condensing Technology Influence and characteristics gross calorific value net & gross calorific value

Gas Condensing Technology Influence and characteristics gross calorific value net & gross calorific value (Ho) 1) the larger the difference between gross and net calorific value the larger the energy gain! H 2 O „fluid" Hovalwerk AG Gained quantity of heat at full combustion 1. ) 2) Referred efficiency determination on Hu (100 %) net calorific value (Hu) H 2 O "vaporous" fuels 2. ) Natural Gas H* PROPANE BUTANE HEIZÖL EL** HEIZÖL EL gross (Ho) 11. 14 k. Wh/m 3 28. 11 k. Wh/m 3 37. 17 k. Wh/m 3 12. 56 k. Wh/kg 10. 68 k. Wh/l net (Hu) relation Ho / H u 10. 06 k. Wh/m 3 25. 88 k. Wh/m 3 34. 32 k. Wh/m 3 11. 80 k. Wh/kg 10. 08 k. Wh/l 1. 11 1. 09 1. 08 1. 06 * russian natural gas ** Specifikation ÖMV "Futura" 01. 09. 2002 9

Gas Condensing Technology Schematic picture of a condensing boiler First part of the heat

Gas Condensing Technology Schematic picture of a condensing boiler First part of the heat exchanger 120 - 180 °C Second part of the heat exchanger Flow < 35 °C Return 1200 - 1600 °C ~ 40 °C Flue Gas Fuel and Combustion Air Condensate Drain Burner Design: Atmospheric Burner, Premix Burner, Pressure Jet Burner Temperatures are examples! Hovalwerk AG 01. 09. 2002 10

Gas Condensing Technology Flue Gas Boiler Shell Dew point Boiler Water Flue Gas 52

Gas Condensing Technology Flue Gas Boiler Shell Dew point Boiler Water Flue Gas 52 - 57 °C CO 2 Fuel Natural Gas Combustion Hovalwerk AG 01. 09. 2002 Dew Point specific amount of condensation Theor. max. CO 2 -Content *) ~ 56°C 0. 16 kg/k. Wh 11. 8 % PROPANE ~ 52°C 0. 12 kg/k. Wh 13. 7 % BUTANE ~ 51°C 0. 12 kg/k. Wh 14. 1 % Fuel Oil EL ~ 47°C 0. 09 kg/k. Wh 15. 3 % *) ÖNORM M 7510, T 2 11

Gas Condensing Technology 60 50 Dew point °C 40 30 20 10 0 5

Gas Condensing Technology 60 50 Dew point °C 40 30 20 10 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Water Contnet (Vol. -%) 4 CO 2 -Content Vol. -% Dew point in dependence of the fuel and the CO 2 -content 6 8 10 12 Natural Gas Net CV = 10, 04 k. Wh/m 3 CO 2 max = 12, 0 % 14 16 Hovalwerk AG 01. 09. 2002 Cole Net CV = 7, 91 k. Wh/kg CO 2 max = 20, 6 % Fuel. Oil EL Net CV = 11, 86 k. Wh/kg CO 2 max = 15, 3 % 12

Gas Condensing Technology Amount of condensate and efficiency in dependence of the return temperature

Gas Condensing Technology Amount of condensate and efficiency in dependence of the return temperature Amount of Condesate g/k. Wh 110 1 2 Efficiency % 105 Co air ratio 1. 1 natural gas H nd en sa te 3 100 Efficiency 95. . Depends on the temperature difference in the boiler shell 90 20 30 Return Temperature °C Hovalwerk AG 40 50 60 120 110 100 90 80 70 60 50 40 30 20 10 0 Condensate in real (Theory = 100%): ~70 -75 % ~60 -65 % ~45 -50 % 01. 09. 2002 natural gas 13

Gas Condensing Technology Ultra. Gas® efficiency -comparison ( ) Low temperature-boiler Condensing boiler-oil gross

Gas Condensing Technology Ultra. Gas® efficiency -comparison ( ) Low temperature-boiler Condensing boiler-oil gross (GCV) net (LCV) 90 % gross (GCV) Not used condensation heat 100 %gross Available heat Hovalwerk AG Not used condensation heat 106 % net Fluegas losses net (LCV) 100 % gross Not used condensation heat 111 % net Fluegas losses 104 % net 98 % gross Radiation losses 91 %net 85 % gross (GCV) net (LCV) 100 % net 93 % net 87 % gross Condensing boiler-gas 109 % net 98 % gross Radiation losses Fluegas losses Radiation losses 108 % net 97 % gross 103 % net 97 % gross Available heat 01. 09. 2002 Available heat 14

Gas Condensing Technology Ultra. Gas® efficiency comparison ( ) acc. to DIN 4702 -

Gas Condensing Technology Ultra. Gas® efficiency comparison ( ) acc. to DIN 4702 - 8 98 % (gross) 95 % (gross) 109 % (net) 105 %(net) 86 % (gross) 95 % (net) 75 / 60 °C 40 / 30 °C 75 / 60 °C LT-boiler Condensing boiler The efficiency calculated according to DIN 4702 - 8 is an objective and Hovalwerk AG comparable figure for boilers (heating mode) 01. 09. 2002 15

Gas Condensing Technology Ultra. Gas® State of the art in boiler technology Ø Ø

Gas Condensing Technology Ultra. Gas® State of the art in boiler technology Ø Ø Ø A single pass, natural gas down fired, firetube boiler. Fully condensing capable, hot water boiler sizes with capacity range of 50 k. W through 650 k. W single and from 250 k. W to 1300 k. W as double unit available. Hovalwerk AG 01. 09. 2002 16

Gas Condensing Technology General plan of types modulating ratio power range at 40/30°C Ultra.

Gas Condensing Technology General plan of types modulating ratio power range at 40/30°C Ultra. Gas® (50) Ultra. Gas® (60) Ultra. Gas® (80) Ultra. Gas® (100) Ultra. Gas® (125) Ultra. Gas® (150) Ultra. Gas® (200) Ultra. Gas® (250) Ultra. Gas® (300) Ultra. Gas® (350) Ultra. Gas® (400) Ultra. Gas® (450) Ultra. Gas® (500) Ultra. Gas® (650) Hovalwerk AG 13 13 21 21 25 32 44 49 55 55 99 99 99 94 01. 09. 2002 - 52 k. W 62 k. W 82 k. W 101 k. W 125 k. W 150 k. W 202 k. W 250 k. W 300 k. W 350 k. W 400 k. W 450 k. W 500 k. W 650 k. W 17

Gas Condensing Technology General plan of types modulating ratio power range at 40/30°C Ultra.

Gas Condensing Technology General plan of types modulating ratio power range at 40/30°C Ultra. Gas® (250 D) Ultra. Gas® (300 D) Ultra. Gas® (400 D) Ultra. Gas® (500 D) Ultra. Gas® (600 D) Ultra. Gas® (700 D) Ultra. Gas® (800 D) Ultra. Gas® (900 D) Ultra. Gas® (1000 D) Ultra. Gas® (1300 D) Hovalwerk AG 25 32 44 49 55 55 99 99 99 94 01. 09. 2002 - 246 k. W - 300 k. W - 404 k. W - 500 k. W - 600 k. W - 700 k. W - 800 k. W - 900 k. W - 1000 k. W - 1300 k. W 18

Gas Condensing Technology Design Optimised stratification, a counter flow heat exchanger design to provide

Gas Condensing Technology Design Optimised stratification, a counter flow heat exchanger design to provide optimal heat transfer Heavy Polymer flue gas collection box prevents acidic corrosion. Hovalwerk AG 01. 09. 2002 19

Gas Condensing Technology alu. Fer® Ø The extended heating surface design provides the ideal

Gas Condensing Technology alu. Fer® Ø The extended heating surface design provides the ideal solution for the demands of a condensing boiler and helps to recover virtually all the latent heat of the flue gas. Ø The tube consists of an outer stainless steel 1. 4571 (316 Ti) tube (waterside) and an aluminium profile on the flue gas side. Ø The Clearfire is also qualified for the use of inhibitors. I. e. used in heating systems with oxygen diffusion. Hovalwerk AG 01. 09. 2002 20

Gas Condensing Technology alu. Fer® Ø Aluminium has a ten times higher heat conductivity

Gas Condensing Technology alu. Fer® Ø Aluminium has a ten times higher heat conductivity compared to stainless steel. Ø The complex aluminium profile with fins and micro structures produce a huge heat transfer surface. Ø The micro structure causes a complex turbulent flow pattern and intensities the heat transfer. Ø The vertical position of the tubes enables a self-cleaning effect. A reduction in efficiency due to deposits on the surface is avoided. Ø each alu. Fer® tube is divided into eight flow channels. Ø As a result, turbulent flue gas flow is created and a hot core stream is avoided Hovalwerk AG 01. 09. 2002 21

Gas Condensing Technology Ultraclean®burner system Ø extremely clean combustion Ø turn down ratio 1

Gas Condensing Technology Ultraclean®burner system Ø extremely clean combustion Ø turn down ratio 1 : 6. 5 Ø low noise Ø minimum electrical power consumption Hovalwerk AG 01. 09. 2002 22

Gas Condensing Technology Ultraclean® schematic diagram Venturi Fan Air Ignition p Burner Gas valve

Gas Condensing Technology Ultraclean® schematic diagram Venturi Fan Air Ignition p Burner Gas valve Hovalwerk AG 01. 09. 2002 23

Gas Condensing Technology Ultraclean® Ø The Clearfire®-premix burner is made of a high temperature

Gas Condensing Technology Ultraclean® Ø The Clearfire®-premix burner is made of a high temperature resistant Fecralloy metal fibre Ø almost flameless combustion of the homogeneous gas / air mixture. Ø The solid body radiation of the burner surface cools the flame and enables extremely low emissions. Ø The flexible metal fabric prevents thermal stresses, resulting in a long lifetime of the Ultraclean®-premix burner. Ø Ultra Low NOx Performance Hovalwerk AG 01. 09. 2002 24

Gas Condensing Technology Ultra. Gas® (300, 350, 600 D, 700 D) emissions NOx /

Gas Condensing Technology Ultra. Gas® (300, 350, 600 D, 700 D) emissions NOx / CO in [mg/m] 3 NOX and CO in relation to the burner load (dry, 3 % O 2) 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 burner load [%] NO(x) Ultra. Gas® (300, 350, 600 D, 700 D) Hovalwerk AG 01. 09. 2002 CO Ultra. Gas® (300, 350, 600 D, 700 D) 25

Gas Condensing Technology Summary Condensation Maximum efficiency Saves money Less primary energy used Less

Gas Condensing Technology Summary Condensation Maximum efficiency Saves money Less primary energy used Less CO 2 (approx 42%) Protects the Environment Hovalwerk AG 01. 09. 2002 26