Crust Crust 10 70 km acidic composition Upper

  • Slides: 31
Download presentation

地球の層構造 地震波速度分布にもとづくと: • 地殻 Crust: Crust ~10– 70 km, 珪長質 acidic composition (上部地殻 Upper crust of continent)

地球の層構造 地震波速度分布にもとづくと: • 地殻 Crust: Crust ~10– 70 km, 珪長質 acidic composition (上部地殻 Upper crust of continent) 苦鉄質 basic (mafic) composition (下部地殻 Lower crust    of continent及び 海洋地殻 Oceanic crust ) • マントル Mantle: Mantle ~2800 km, ultramafic composition • 外核 Outer core: core ~2200 km, liquid iron (with light elements) • 内核 Inner core: core ~1500 km, solid iron (with light elements? )

Sir Harold Jeffreys, FRS[1] (22 April 1891 – 18 March 1989) Jeffreys was born

Sir Harold Jeffreys, FRS[1] (22 April 1891 – 18 March 1989) Jeffreys was born in Fatfield, Washington, County Durham, England. Beno Gutenberg (1889– 1960) He joined the laboratory in 1930 and, at the same time, became a Professor of Geophysics at the California Institute of Technology.

地球の層構造 Bullen, Keith Edward (1906 - 1976) 29 June 1906, Auckland, New Zealand Bullen(1936)は地殻をA層、マントルをB層,

地球の層構造 Bullen, Keith Edward (1906 - 1976) 29 June 1906, Auckland, New Zealand Bullen(1936)は地殻をA層、マントルをB層, C層, D層、外核をE層, F層、内核をG 層に分け、速度分布、密度分布を求めた。 A層 地殻 Crust --モホ面 Moho discontinuity-B層 上部マントル Upper mantle --410 km地震波不連続面--- 410 km seismic discontinuity C層 マントル遷移層 Mantle transition zone --660 km地震波不連続面---660 km seismic discontinuity D層 下部マントル Lower mantle --D”層 核マントル境界 Core-mantle boundary (CMB) E層 外核 Outer core --F層 内核境界 Inner core boundary (ICB) G層 内核 Inner core

ABC A 層~G層 D D” E F G A層 地殻 Crust --モホ面 Moho discontinuity-B層 上部マントル Upper mantle --410 km地震波不連続面--  410 km

ABC A 層~G層 D D” E F G A層 地殻 Crust --モホ面 Moho discontinuity-B層 上部マントル Upper mantle --410 km地震波不連続面--  410 km seismic discontinuity C層 マントル遷移層    Mantle transition  zone --660 km地震波不連続面--  660 km seismic discontinuity D層 下部マントル Lower mantle D”層 核マントル境界  --Core-mantle boundary (CMB) E層 外核 Outer core F層 内核境界  --Inner core boundary (ICB) G層 内核 Inner core

地球の化学組成・鉱物組成 Composition of the Earth 地震学的研究によると密度は:Seismology tells us about the density of rocks: • 地殻 Crust

地球の化学組成・鉱物組成 Composition of the Earth 地震学的研究によると密度は:Seismology tells us about the density of rocks: • 地殻 Crust   大陸地殻 Continental crust: crust ~2. 8 g/cm 3   海洋地殻 Oceanic crust: crust ~3. 2 g/cm 3  • リソスフィア Lithosphere: Lithosphere Crust + Uppermost crust • アセノスフィア Asthenosphere: Asthenosphere ~3. 3 g/cm 3

Seismograph Record of P, PP, S, and Surface Waves 地震計の記録:P, PP, S, 表面波

Seismograph Record of P, PP, S, and Surface Waves 地震計の記録:P, PP, S, 表面波

P-and S-wave Pathways Through Earth 地球内部のP波とS波の波線(Ray path) Fig. 19. 3

P-and S-wave Pathways Through Earth 地球内部のP波とS波の波線(Ray path) Fig. 19. 3

核の影 P波 P-wave Shadow Zone Fig. 19. 2 a

核の影 P波 P-wave Shadow Zone Fig. 19. 2 a

核の影: S波 S-wave Shadow Zone Fig. 19. 2 b

核の影: S波 S-wave Shadow Zone Fig. 19. 2 b

内核の発見(1936) Dr. Inge Lehmann (1888 -1993), 内核の 発見者  Born in Denmark in 1888 The existence

内核の発見(1936) Dr. Inge Lehmann (1888 -1993), 内核の 発見者  Born in Denmark in 1888 The existence of an inner core distinct from the liquid outer core was discovered in 1936 by seismologist Inge Lehmann[3] using observations of earthquake-generated seismic waves that partly reflect from its boundary and can be detected by sensitive seismographs on the Earth's surface.

地震の大きさ:マグニチュード Maximum Amplitude of Ground Shaking Determines リヒタースケール Richter Magnitude Charles Francis Richter (/ˈrɪktər/;

地震の大きさ:マグニチュード Maximum Amplitude of Ground Shaking Determines リヒタースケール Richter Magnitude Charles Francis Richter (/ˈrɪktər/; 1900– 1985), was an American seismologist and physicist. California Institute of Technology 最大振幅(ミクロン)の常用対数 1増えると振幅が10倍、エネルギーは 31. 62倍 2増えると振幅は 100倍、エネルギーは 1000倍 A mm at d= 100 km

プレートテクトニクス Mosaic of Earth’s Plates Peter W. Sloss, NOAA-NESDIS-NGDC 24

プレートテクトニクス Mosaic of Earth’s Plates Peter W. Sloss, NOAA-NESDIS-NGDC 24

World Seismicity, 1963– 2000 Fig. 18. 14

World Seismicity, 1963– 2000 Fig. 18. 14

Upper Mantle Convection as a Possible Mechanism for Plate Tectonics ここまで 2010/11/1 Fig. 19. 8

Upper Mantle Convection as a Possible Mechanism for Plate Tectonics ここまで 2010/11/1 Fig. 19. 8