Characterization Classification Long range ordering periodicity unit cell

  • Slides: 33
Download presentation
Characterization: Classification: Long range ordering periodicity unit cell Symmetry 7 crystal systems 230 space

Characterization: Classification: Long range ordering periodicity unit cell Symmetry 7 crystal systems 230 space groups Structural information: Unit cell Miller indices (h, k, l) d spacing Relative intensity atomic positions 1

X-ray Crystallography Introduction Crystal Diffraction Structure · Structure Amplitudes, Fhkl · Atomic scattering factors

X-ray Crystallography Introduction Crystal Diffraction Structure · Structure Amplitudes, Fhkl · Atomic scattering factors · Fourier transfer Fhkl (x, y, z) · Least squares refinement · Structure properties --- Distance / angles ; packing etc. · Structure data base 2

Structural Analysis: Data measurement: h, k, l, dhkl , nhkl , Ihkl ( F

Structural Analysis: Data measurement: h, k, l, dhkl , nhkl , Ihkl ( F 2 hkl ) Phase determination heavy atom method; direct method; multiple scattering Fourier transformation: F 2 (r); reciprocal real space Least squares refinement: (r) xi, yi, zi, ui Structural model: bond distances; bond angles; atomic thermal vibration etc. 3

Bragg Diffraction l d 4

Bragg Diffraction l d 4

Structure Factor Calculation (A)2 (B’)2 F 2 cos 2 F 2 sin 2 F

Structure Factor Calculation (A)2 (B’)2 F 2 cos 2 F 2 sin 2 F 2 Combination of Wave P 1 f 1 X 1 f 2 P 2 Resultant X 2 0 90 180 f 1 270 Xtotal 0 0 f 2 F A’ i. B’ F ei 90 180 270 Direction (nhkl) Amplitude fi Phase i 360 450 540 Direction (h, k, l) X 1 f 1 cos X 2 f 2 cos Xtotal (f 1 f 2)cos P 1 1 P 2 f 1 2 f 2 0 X 1 90 f 1 X 2 90 180 Phase Resultant 0 0 f 2 F Xtotal 90 180 Xtotal f 1 cos( 1) f 2 cos( 2) cos (f 1 cos 1 f 2 cos 2) Let sin (f 1 sin 1 f 2 sin 2) Xtotal F cos( ) 270 360 450 540 X 1 f 1 cos( 1) Amplitude F hkl F cos F sin B’ f 2 sin 2 f 1 sin 1 f 2 F 2 f 1 1 A’ f 1 sin 1 f 2 sin 2 X 2 f 2 cos( 2) 5

Structure Amplitude (Factor) X 1 S 0 X 2 rn S R Detector 6

Structure Amplitude (Factor) X 1 S 0 X 2 rn S R Detector 6

Pathlength difference bet. atom n at rn and the origin at 0 Electric field

Pathlength difference bet. atom n at rn and the origin at 0 Electric field at rn : E 0 : electric field amplitude of the incident beam at rn Electric field at P (defection): 7

2θ 8

2θ 8

 mth order Zeroth order ’ E E’ D mth order G a F

mth order Zeroth order ’ E E’ D mth order G a F Incident beam 9

Bh Fh Ah If centrosymmetric and no anomalous scatter: Bh=0; α=0 orπ 10

Bh Fh Ah If centrosymmetric and no anomalous scatter: Bh=0; α=0 orπ 10

 h 11

h 11

Centric case with non-anomalous scatterers Z pt. charge B=0 B>0 atomic sphere (fixed atom

Centric case with non-anomalous scatterers Z pt. charge B=0 B>0 atomic sphere (fixed atom at ri) T=0 K with thermal vibration T as function of B : Thermal parameter 12

Centric case with anomalous scatterers when NA : No. of atom types in an

Centric case with anomalous scatterers when NA : No. of atom types in an asymmetric unit NE : No. of symm. elements of the space group if at (000) Ri : sym. operator h : (h, k, l) xj : (xj, yj, zj) then 13

Considering nuclear thermal vibration As a point scatterer thermal vibration electron density smearing if

Considering nuclear thermal vibration As a point scatterer thermal vibration electron density smearing if isotropic spherically symmetric 2 Å 14

Tanisotropic thermal vibration as an ellipsoid 3× 3 matrix 6 elements uij symmetric: u

Tanisotropic thermal vibration as an ellipsoid 3× 3 matrix 6 elements uij symmetric: u 12= u 21; u 23 = u 32; u 13 = u 31 based on a, b, c, -axis 15

Thermal ellipsoid diagonize eigen value eigen function (three principle axes of the ellipsoid) u

Thermal ellipsoid diagonize eigen value eigen function (three principle axes of the ellipsoid) u 1 u 2 u 3 16

Constraint in Thermal vibration In case of ab-plane mirror plane sym: U 11 ,

Constraint in Thermal vibration In case of ab-plane mirror plane sym: U 11 , U 22 , U 33 , U 12 U 13=U 23=0 x → x y → y z → -z U 11 U 22 U 33 U 12 U 13 U 23 U 12=U 12 U 13 →-U 13;U 23 →-U 23 ∴U 13=U 23=0 17

Systematic Absences P 21 for any atom i at x y z -x y+1/2

Systematic Absences P 21 for any atom i at x y z -x y+1/2 -z R 1 x R 2 x 18

Let hx + lz When 0 i. e. h 0 and I 0 i.

Let hx + lz When 0 i. e. h 0 and I 0 i. e. for 0 k 0 reflections G 0 k 0 cos 2 ky cos 2 [ky (k/2)] i {sin 2 ky sin 2 [ky (k/2)]} cos 2 ky cosk sin 2 ky sink i sin 2 ky cosk i cos 2 ky sink 2(cos 2 ky i sin 2 ky) when k 2 n 0 when k 2 n 1 19

Systematic Absences (space group extinction from translational sym. elements) 20

Systematic Absences (space group extinction from translational sym. elements) 20

21

21

22

22

23

23

Atomic Scattering Difference in phase 2 X-ray Beam Atom 24

Atomic Scattering Difference in phase 2 X-ray Beam Atom 24

Atomic Scattering If the atom is a point charge (compared w. r. t the

Atomic Scattering If the atom is a point charge (compared w. r. t the wavelength), it scatters as Z (atomic number) Scattering amplitude (factor) ρ(r) :electron density around nucleus dq = ρ(r) d. V q: charge V : volume amplitude scattered by atom Eatom amplitude scattered by free e- Ee r d 25

26

26

For example f. Z Int’l Table of X-ray Crystallography. Vol C Ψ mostly from

For example f. Z Int’l Table of X-ray Crystallography. Vol C Ψ mostly from HF p. 477 sinθ/λ Analytical form : Vol C. p 500. 27

f 0 for atoms from Z = 1 to 90 28

f 0 for atoms from Z = 1 to 90 28

coefficients of analytical form in atomic scattering factors 29

coefficients of analytical form in atomic scattering factors 29

30

30

Anomalous Scattering (b) (a) Gd 30 20 f” 30 Sm 20 f” 10 10

Anomalous Scattering (b) (a) Gd 30 20 f” 30 Sm 20 f” 10 10 0 0 10 f’ 20 30 Fig. : Anomalous scattering terms f’ and f” for: (a) gadolinium near the L 3 edge; (b) samarium near the L 3 edge 30 1705 1710 1715 184 (Å) (c) f” Gd (d) (Å) 185 f” Sm 30 30 20 20 10 10 Fig. : f’ 30 20 10 0 0 Plot in the complex plane of f’ i f”: (c) gadolinium near the L 3 edge; (d) samarium near the L 3 edge 31

Atomic f’ and f” 32

Atomic f’ and f” 32

Relationship between Fhkl & ρuvw Atomic scattering Crystal scattering general form with continuous ρ(u,

Relationship between Fhkl & ρuvw Atomic scattering Crystal scattering general form with continuous ρ(u, v, w) Corresponds to the intensity of h, k, l refln. reciprocal space corresponds to the electron density at u, v, w position direction space 33