XLIV International Symposium on multiparticle dynamics 8 12

  • Slides: 26
Download presentation
XLIV International Symposium on multiparticle dynamics 8 -12 September 2014, Bologna Cosmic-ray world with

XLIV International Symposium on multiparticle dynamics 8 -12 September 2014, Bologna Cosmic-ray world with gamma-ray astronomy: a wealth of information, an ever more open issue Martina Cardillo INAF-Osservatorio Astrofisico di Arcetri September 9, 2014

Index ² SNR/CR context and gamma-rays ² Main Issue: can we resolve the problem

Index ² SNR/CR context and gamma-rays ² Main Issue: can we resolve the problem of the origin of hadronic cosmic-rays? ² The breakthrough: • The SNR W 44 and the first direct proof ² Challenges: • data vs theory ² Prospects for the future

Context 1949 E. Fermi (Fermi acceleration) ic t ac n l a i G

Context 1949 E. Fermi (Fermi acceleration) ic t ac n l a i G rig O Protons (85 %) Nuclei (13%) Electrons/Positrons (2%) α=2. 7 1959. V. Ginzburg (SNRs hypothesis) Supernova Remnants • Energetic shock waves • Possibility of energy gains by repeated shock crossing

 Context Linear DSA Concavity STRONG SHOCK r=4 Non Linear DSA

Context Linear DSA Concavity STRONG SHOCK r=4 Non Linear DSA

Context Balmer line emission by charge-exchange INDIRECT UPSTREAM DOWNSTREAM Accelerated protons Pevatrons Gamma-ray from

Context Balmer line emission by charge-exchange INDIRECT UPSTREAM DOWNSTREAM Accelerated protons Pevatrons Gamma-ray from pion emission DIRECT

Gamma-rays Space (Me. V-Ge. V) AGILE Earth (Ge. V-Te. V) MAGIC Fermi. LAT VERITAS

Gamma-rays Space (Me. V-Ge. V) AGILE Earth (Ge. V-Te. V) MAGIC Fermi. LAT VERITAS HESS

Gamma-ray SNRs Several SNRs detected in gamma-rays, but finding a clear proof is very

Gamma-ray SNRs Several SNRs detected in gamma-rays, but finding a clear proof is very difficult! 7

 Gamma-ray detection: problem unique signature! M E BL O R P

Gamma-ray detection: problem unique signature! M E BL O R P

Gamma-ray detection: problem Abdo et al. 2010 CAS A Tycho CAS A Giordano et

Gamma-ray detection: problem Abdo et al. 2010 CAS A Tycho CAS A Giordano et al. 2012 Abdo et al. 2010 Krause et al. 2011 W 51 c IC 443 Abdo et al. 2010 Tavani et al. 2010

The breakthrough: the SNR W 44 Fermi-LAT (Abdo et al 2010) W 44: gamma-ray

The breakthrough: the SNR W 44 Fermi-LAT (Abdo et al 2010) W 44: gamma-ray emission (Fermi) (Abdo et al. 2010)

The breakthrough: the SNR W 44 Giuliani, Cardillo, Tavani et al. (2011) Pion bump:

The breakthrough: the SNR W 44 Giuliani, Cardillo, Tavani et al. (2011) Pion bump: direct proof AGILE

The breakthrough: the SNR W 44 Fermi confirms AGILE data Ackermann et al. (2013)

The breakthrough: the SNR W 44 Fermi confirms AGILE data Ackermann et al. (2013)

The challenge: the SNR W 44 Cardillo et al. 2014

The challenge: the SNR W 44 Cardillo et al. 2014

The challenge: from W 44 to all the others Ø First pion bump signature:

The challenge: from W 44 to all the others Ø First pion bump signature: * low-E index p 1 ~ 2. 2 as like as the young SNRs Ø High density: n ≈ 300 cm-3 * In all the middle-aged SNRs related to high magnetic field ØHigh magnetic field: B ≈ 200 μG * in the most of the SNRs amplification * differences between young and old Ø Steepness: Cardillo et al. , * p 2 ≥ 3 Why? 2014

The SNR W 28 HESS (Te. V) Giuliani et al. , 2010 AGILE E>400

The SNR W 28 HESS (Te. V) Giuliani et al. , 2010 AGILE E>400 Me. V - Spectral index for E>1 Ge. V α=2. 7 - Linear DSA model

W 28 and W 44 AGILE E>400 Me. V (bin=0. 1) Cardillo et al.

W 28 and W 44 AGILE E>400 Me. V (bin=0. 1) Cardillo et al. 2014 b VLA radio contours (324 MHz) VLA radio contours (30 cm) GRS CO contours (4043 Km/s) NANTEN CO contours 017/18 -27 km/s

Young SNRs t < 1000 -2000 yrs Cas A Primary spectrum 1006 Tycho W

Young SNRs t < 1000 -2000 yrs Cas A Primary spectrum 1006 Tycho W 44 Environment (ISM, molecular clouds)) Middle-aged SNRs t > 1000 -2000 yrs Secondary spectrum IC 443 W 28

Environment importance: the SNR RX J 1713 -3946 NS O R D HA Aharonian

Environment importance: the SNR RX J 1713 -3946 NS O R D HA Aharonian et al. 2007 ONS R D A H Fukui et al. 2013 Gabici & Aharonian 2014 LEPT ONS Abdo et al. 2011 …even if th e leptons maybe could…

Summary: a great confusion Cardillo et al. 2014 b Middle-age Giordano et al. 2012

Summary: a great confusion Cardillo et al. 2014 b Middle-age Giordano et al. 2012 Acciari et al. 2009 Abdo et al. 2010 Albert et al 2007 Acciari et al. 2010 Young SNRs Young: • Low-density medium • p= 2, 2 -2, 4 No concavity!! • No obvious Pevatrons Abdo et al. 2009 Hewitt et al. 2012 Giuliani et al. 2011 Aleksic et al 2012 Aleksic et al. 2012 Abdo et al. 2010 Middle-aged: • High-density medium • 2, 6 < p < 3 • No hope for Pevatrons !

p x e n a r o f g n i k o o

p x e n a r o f g n i k o o l w: e i v f o t in o p ic t s i m i t p O pres m co r e w Lo How can we explain experimental features of observed SNRs in the context of o ti CR acceleration? a r n sio F ap c s E ree ary d n u e bo n o i t lana n io t a r e cel c a r e Low ncy e effici n Slow sio u f f i er d

Pessimistic point of view: no SNRs, other sources Cygnus region: Ge. V emission from

Pessimistic point of view: no SNRs, other sources Cygnus region: Ge. V emission from Fermi-LAT (Ackermann et al. 2011) Su s e l b b u b r pe MGRO 2031+41: Te. V emission from ARGO (Bartoli et al. 2012)

And particle spectrum? Cardillo, Amato, Blasi, in preparation Non resonant instability and CR current

And particle spectrum? Cardillo, Amato, Blasi, in preparation Non resonant instability and CR current (Bell 2004) y r a in P m i l re k=9 ESN= 4 x 1051 erg R= 1/60 yrs Uncertainty on the data? EM ≅ 1. 2 x 1015 e. V ξCR ≅ 4. 5 % Additional component? t 0 ≅ 42 yrs v 0 ≅23. 700 km/s

Future for gamma-ray astronomy

Future for gamma-ray astronomy

Future for gamma-ray astronomy G-400 and CTA sensitivity (extragal. pointing) Fermi-LAT (blue), G-400 (red),

Future for gamma-ray astronomy G-400 and CTA sensitivity (extragal. pointing) Fermi-LAT (blue), G-400 (red), CTA (cyan) G-400 48 hr, CTA 5 hr G-400 CTA G-400 1 yr, CTA 50 hr G-400 CTA We need to improve detection at energy below 100 Me. V several proposals, never materialized yet (Gamma-Light ? ) 24

Conclusions ² Gamma-ray astronomy is fundamental for the understanding of Galactic CR origin we

Conclusions ² Gamma-ray astronomy is fundamental for the understanding of Galactic CR origin we need to enhance the number of SNRs detected in the critical energy range, after the breakthrough of W 44 and IC 443 ² Evidence a power-law index steeper than the one provided by theoretical models in the most of gamma-ray detected SNRs inconsistency between data and theories ² In spite of the amount of data, CR origin is still an opening issue new generation of gamma-ray instruments multiwavelength analysis deeper understanding of acceleration and transport mechanisms

u o y k n ! a h h c T u m y

u o y k n ! a h h c T u m y r ve