Review of Coherent Noise Suppression Methods Gerard T

  • Slides: 40
Download presentation
Review of Coherent Noise Suppression Methods Gerard T. Schuster University of Utah

Review of Coherent Noise Suppression Methods Gerard T. Schuster University of Utah

Problem: Ground Roll Degrades Signal 0 2000 Offset (ft) 3500 Time (sec) Reflections 2.

Problem: Ground Roll Degrades Signal 0 2000 Offset (ft) 3500 Time (sec) Reflections 2. 5 Ground Roll

Problem: PS Waves Degrade Signal Time (sec) 0 4. 0 Reflections Converted S Waves

Problem: PS Waves Degrade Signal Time (sec) 0 4. 0 Reflections Converted S Waves

Time (sec) Problem: Tubes Waves Obscure PP 4. 0 0 2000 Depth (ft) Reflections

Time (sec) Problem: Tubes Waves Obscure PP 4. 0 0 2000 Depth (ft) Reflections Time (s) Reflections Aliased tube. Converted waves S Waves 0. 14 3100

Problem: Out-of-Plane Ground Roll

Problem: Out-of-Plane Ground Roll

Outline • • Coherent Filtering Methods ARCO Field Data Results Multicomponent Data Example Conclusion

Outline • • Coherent Filtering Methods ARCO Field Data Results Multicomponent Data Example Conclusion and Discussion

Traditional Filtering Methods F-K Dip Filtering in - p domain linear - p parabolic

Traditional Filtering Methods F-K Dip Filtering in - p domain linear - p parabolic - p hyperbolic - p Least Squares Migration Filter

Separation Principle: Exploit Differences in Moveout & Part. Velocity Directions Time SIGNAL Frequency SIGNAL

Separation Principle: Exploit Differences in Moveout & Part. Velocity Directions Time SIGNAL Frequency SIGNAL Transform NOISE Distance NOISE Overlap Signal & Noise Wavenumber

Tau-P Transform Tau Time Sum Transform Distance P

Tau-P Transform Tau Time Sum Transform Distance P

Transform Distance Tau Time Tau-P -P Transform Tau P

Transform Distance Tau Time Tau-P -P Transform Tau P

Transform Distance Tau Time Tau-P -P Transform Tau Mute Noise P

Transform Distance Tau Time Tau-P -P Transform Tau Mute Noise P

Transform Tau Time Tau-P Transform Problem: Indistinct Separation Signal/Noise Distance P

Transform Tau Time Tau-P Transform Problem: Indistinct Separation Signal/Noise Distance P

Transform Distance Tau Time Hyperbolic Transform Tau-P Transform Distinct Separation Signal/Noise P

Transform Distance Tau Time Hyperbolic Transform Tau-P Transform Distinct Separation Signal/Noise P

v v v v v Irregular Moveout B Time * Breakdown of Hyperbolic Assumption

v v v v v Irregular Moveout B Time * Breakdown of Hyperbolic Assumption A Distance

Time B A Distance Time Filtering by Parabolic - p Signal/Noise Overlap p

Time B A Distance Time Filtering by Parabolic - p Signal/Noise Overlap p

Filtering by LSMF Invert for m p & m s Kirchhoff P-reflectivity Modeler Time

Filtering by LSMF Invert for m p & m s Kirchhoff P-reflectivity Modeler Time PP PS Distance d = Lp mp + L m s s

Filtering by LSMF -1 Time PP Ls Z -1 PS Distance Lp M 21

Filtering by LSMF -1 Time PP Ls Z -1 PS Distance Lp M 21 X

LSMF Method 1. d=L m + L m p p s s data 2.

LSMF Method 1. d=L m + L m p p s s data 2. unknowns Find mp by conjugate gradient 3. Model Coherent Signal d = Lp mp

Multicomponent Filtering by LSMF PS PP Time PP Z PS Distance d x =

Multicomponent Filtering by LSMF PS PP Time PP Z PS Distance d x = L pmp + L m s s d z = L pmp + L m

Summary Traditional coherent filtering based on approximate moveout LSMF filtering operators based on actual

Summary Traditional coherent filtering based on approximate moveout LSMF filtering operators based on actual physics separating signal & noise Better physics --> Better focusing, more $$$

Outline • • Coherent Filtering Methods ARCO Surface Wave Data Multicomponent Data Example Conclusion

Outline • • Coherent Filtering Methods ARCO Surface Wave Data Multicomponent Data Example Conclusion and Discussion

ARCO Field Data Time (sec) 0 2. 5 2000 Offset (ft) 3500

ARCO Field Data Time (sec) 0 2. 5 2000 Offset (ft) 3500

LSM Filtered ARCO Data Field(V. Data Const. ) Time (sec) 0 2. 5 2000

LSM Filtered ARCO Data Field(V. Data Const. ) Time (sec) 0 2. 5 2000 Offset (ft) 3500

F-K Filtered LSM Filtered Data (13333 ft/s) (V. Const. ) Time (sec) 0 2.

F-K Filtered LSM Filtered Data (13333 ft/s) (V. Const. ) Time (sec) 0 2. 5 2000 Offset (ft) 3500

S. F-X of Frequency (Hz) 0 50 Spectrum of ARCO Data LSM Filtered Data

S. F-X of Frequency (Hz) 0 50 Spectrum of ARCO Data LSM Filtered Data (V. Const) F-K Filtered Data (13333 ft/s) 2000 Offset (ft) 3500

Outline • • • Coherent Filtering Methods ARCO Field Data Results Multicomponent Data Example

Outline • • • Coherent Filtering Methods ARCO Field Data Results Multicomponent Data Example Graben Example Mahogony Example • Conclusion and Discussion

Graben Velocity Model 0 Depth (m) 0 X (m) V 1=2000 m/s V 2=2700

Graben Velocity Model 0 Depth (m) 0 X (m) V 1=2000 m/s V 2=2700 m/s V 3=3800 m/s V 4=4000 m/s V 5=4500 m/s 3000 5000

Synthetic Data 0 Time (s) 5000 0 0 Offset (m) PP 1 PP 2

Synthetic Data 0 Time (s) 5000 0 0 Offset (m) PP 1 PP 2 PP 3 PP 4 5000 PP 3 PP 4 1. 4 Horizontal Component Vertical Component

LSMF Separation 5000 0 Offset (m) 5000 Offset (m) PP 1 Time (s) PP

LSMF Separation 5000 0 Offset (m) 5000 Offset (m) PP 1 Time (s) PP 2 PP 3 PP 4 1. 4 Horizontal Component Vertical Component

True P-P and P-SV Reflection Offset (m) 5000 0 Time (s) 5000 0 0

True P-P and P-SV Reflection Offset (m) 5000 0 Time (s) 5000 0 0 Offset (m) 1. 4 Horizontal Component Vertical Component

F-K Filtering Separation 0 Time (s) 0 0 5000 Offset (m) PP 1 PP

F-K Filtering Separation 0 Time (s) 0 0 5000 Offset (m) PP 1 PP 2 PP 3 PP 4 5000 Offset (m) PP 3 PP 4 1. 4 Horizontal Component Vertical Component

Outline • • • Coherent Filtering Methods ARCO Field Data Results Multicomponent Data Example

Outline • • • Coherent Filtering Methods ARCO Field Data Results Multicomponent Data Example Graben Example Mahogony Field Data • Conclusion and Discussion

CRG 1 Raw Data Time (s) 0 PS PS 4 CRG 1 (Vertical component)

CRG 1 Raw Data Time (s) 0 PS PS 4 CRG 1 (Vertical component) PS

CRG 1 Data after Using F-K Filtering Time (s) 0 PS PS 4 CRG

CRG 1 Data after Using F-K Filtering Time (s) 0 PS PS 4 CRG 1 (Vertical component) PS

CRG 1 Data after Using LSMF Time (s) 0 PS PS 4 CRG 1

CRG 1 Data after Using LSMF Time (s) 0 PS PS 4 CRG 1 (Vertical component) PS

CRG 2 Raw Data (vertical component) Time (s) 0 4 CRG 2 (Vertical component)

CRG 2 Raw Data (vertical component) Time (s) 0 4 CRG 2 (Vertical component)

CRG 2 Data after Using F-K Filtering (vertical component) Time (s) 0 4 CRG

CRG 2 Data after Using F-K Filtering (vertical component) Time (s) 0 4 CRG 2 (Vertical component)

CRG 2 Data after Using LSMF (vertical component) Time (s) 0 4 CRG 2

CRG 2 Data after Using LSMF (vertical component) Time (s) 0 4 CRG 2 (Vertical component)

Outline • Coherent Filtering Methods • ARCO Field Data Results • Multicomponent Data Example

Outline • Coherent Filtering Methods • ARCO Field Data Results • Multicomponent Data Example • Conclusion and Discussion

Conclusions Filtering signal/noise using: moveout difference & particle velocity direction - Traditional filtering $

Conclusions Filtering signal/noise using: moveout difference & particle velocity direction - Traditional filtering $ vs $$$$ LSMF computes moveout and particle velocity direction based on true physics.