MachineLevel Programming II Control Flow Topics n Condition

  • Slides: 35
Download presentation
Machine-Level Programming II: Control Flow Topics n Condition Codes l Setting l Testing n

Machine-Level Programming II: Control Flow Topics n Condition Codes l Setting l Testing n Control Flow l If-then-else l Varieties of Loops l Switch Statements

Condition Codes Single Bit Registers CF ZF Carry Flag Zero Flag SF OF Sign

Condition Codes Single Bit Registers CF ZF Carry Flag Zero Flag SF OF Sign Flag Overflow Flag Implicitly Set By Arithmetic Operations addl Src, Dest C analog: t = a + b n CF set if carry out from most significant bit l Used to detect unsigned overflow ZF set if t == 0 n SF set if t < 0 n n OF set if two’s complement overflow (a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0) Not Set by leal instruction

Setting Condition Codes (cont. ) Explicit Setting by Compare Instruction cmpl Src 2, Src

Setting Condition Codes (cont. ) Explicit Setting by Compare Instruction cmpl Src 2, Src 1 n cmpl b, a like computing a-b without setting destination n CF set if carry out from most significant bit l Used for unsigned comparisons n ZF set if a == b SF set if (a-b) < 0 n OF set if two’s complement overflow n (a>0 && b<0 && (a-b)<0) || (a<0 && b>0 && (a-b)>0)

Setting Condition Codes (cont. ) Explicit Setting by Test instruction testl Src 2, Src

Setting Condition Codes (cont. ) Explicit Setting by Test instruction testl Src 2, Src 1 n Sets condition codes based on value of Src 1 & Src 2 l Useful to have one of the operands be a mask n n n testl b, a like computing a&b without setting destination ZF set when a&b == 0 SF set when a&b < 0

Reading Condition Codes Set. X Instructions n Set single byte based on combinations of

Reading Condition Codes Set. X Instructions n Set single byte based on combinations of condition codes

Reading Condition Codes (Cont. ) Set. X Instructions n n Set single byte based

Reading Condition Codes (Cont. ) Set. X Instructions n n Set single byte based on combinations of condition codes One of 8 addressable byte registers l Embedded within first 4 integer registers l Does not alter remaining 3 bytes l Typically use movzbl to finish job Body int gt (int x, int y) { return x > y; } movl 12(%ebp), %eax cmpl %eax, 8(%ebp) setg %al movzbl %al, %eax %ah %al %edx %dh %dl %ecx %ch %cl %ebx %bh %bl %esi %edi %esp %ebp # eax = y # Compare x : y # al = x > y # Zero rest of %eax Note inverted ordering!

Jumping j. X Instructions n Jump to different part of code depending on condition

Jumping j. X Instructions n Jump to different part of code depending on condition codes

Conditional Branch Example _max: pushl %ebp movl %esp, %ebp int max(int x, int y)

Conditional Branch Example _max: pushl %ebp movl %esp, %ebp int max(int x, int y) { if (x > y) return x; else return y; } movl 8(%ebp), %edx movl 12(%ebp), %eax cmpl %eax, %edx jle L 9 movl %edx, %eax Set Up Body L 9: movl %ebp, %esp popl %ebp ret Finish

Conditional Branch Example (Cont. ) int goto_max(int x, int y) { int rval =

Conditional Branch Example (Cont. ) int goto_max(int x, int y) { int rval = y; int ok = (x <= y); if (ok) goto done; rval = x; done: return rval; } n C allows “goto” as means of transferring control l Closer to machine-level programming style n Generally considered bad coding style movl 8(%ebp), %edx # edx = x movl 12(%ebp), %eax # eax = y cmpl %eax, %edx # x : y jle L 9 # if <= goto L 9 movl %edx, %eax # eax = x Skipped when x y L 9: # Done:

“Do-While” Loop Example C Code int fact_do (int x) { int result = 1;

“Do-While” Loop Example C Code int fact_do (int x) { int result = 1; do { result *= x; x = x-1; } while (x > 1); return result; } n n Goto Version int fact_goto(int x) { int result = 1; loop: result *= x; x = x-1; if (x > 1) goto loop; return result; } Use backward branch to continue looping Only take branch when “while” condition holds

“Do-While” Loop Compilation Goto Version int fact_goto (int x) { int result = 1;

“Do-While” Loop Compilation Goto Version int fact_goto (int x) { int result = 1; loop: result *= x; x = x-1; if (x > 1) goto loop; return result; } Registers %edx %eax x result Assembly _fact_goto: pushl %ebp movl %esp, %ebp movl $1, %eax movl 8(%ebp), %edx # Setup # eax = 1 # edx = x L 11: imull %edx, %eax decl %edx cmpl $1, %edx jg L 11 # result *= x # x-# Compare x : 1 # if > goto loop movl %ebp, %esp popl %ebp ret # Finish

General “Do-While” Translation Goto Version C Code do Body while (Test); n loop: Body

General “Do-While” Translation Goto Version C Code do Body while (Test); n loop: Body if (Test) goto loop Body can be any C statement l Typically compound statement: { Statement 1; Statement 2; … Statementn; } n Test is expression returning integer = 0 interpreted as false 0 interpreted as true

“While” Loop Example #1 C Code int fact_while (int x) { int result =

“While” Loop Example #1 C Code int fact_while (int x) { int result = 1; while (x > 1) { result *= x; x = x-1; }; return result; } n n First Goto Version int fact_while_goto (int x) { int result = 1; loop: if (!(x > 1)) goto done; result *= x; x = x-1; goto loop; done: return result; } Is this code equivalent to the do-while version? Must jump out of loop if test fails

Actual “While” Loop Translation C Code int fact_while(int x) { int result = 1;

Actual “While” Loop Translation C Code int fact_while(int x) { int result = 1; while (x > 1) { result *= x; x = x-1; }; return result; } n Uses same inner loop as do-while version n Guards loop entry with extra test Second Goto Version int fact_while_goto 2 (int x) { int result = 1; if (!(x > 1)) goto done; loop: result *= x; x = x-1; if (x > 1) goto loop; done: return result; }

General “While” Translation C Code while (Test) Body Do-While Version Goto Version if (!Test)

General “While” Translation C Code while (Test) Body Do-While Version Goto Version if (!Test) goto done; do Body while(Test); done: if (!Test) goto done; loop: Body if (Test) goto loop; done:

“For” Loop Example /* Compute x raised to nonnegative power p */ int ipwr_for(int

“For” Loop Example /* Compute x raised to nonnegative power p */ int ipwr_for(int x, unsigned p) { int result; for (result = 1; p != 0; p = p>>1) { if (p & 0 x 1) result *= x; x = x*x; } return result; } Algorithm n n Exploit property that p = p 0 + 2 p 1 + 4 p 2 + … 2 n– 1 pn– 1 Gives: xp = z 0 · z 1 2 · (z 2 2) 2 · … · (…((zn – 12) 2 )…) 2 zi = 1 when pi = 0 zi = x when pi = 1 n Complexity O(log p) n– 1 times Example 310 = 32 * 38 = 32 * ((32) 2) 2

ipwr Computation /* Compute x raised to nonnegative power p */ int ipwr_for(int x,

ipwr Computation /* Compute x raised to nonnegative power p */ int ipwr_for(int x, unsigned p) { int result; for (result = 1; p != 0; p = p>>1) { if (p & 0 x 1) result *= x; x = x*x; } return result; }

“For” Loop Example General Form int result; for (result = 1; p != 0;

“For” Loop Example General Form int result; for (result = 1; p != 0; p = p>>1) { if (p & 0 x 1) result *= x; x = x*x; } Init result = 1 Body for (Init; Test; Update ) Body Test p != 0 { if (p & 0 x 1) result *= x; x = x*x; } Update p = p >> 1

“For” “While” For Version for (Init; Test; Update ) Body Do-While Version Init; if

“For” “While” For Version for (Init; Test; Update ) Body Do-While Version Init; if (!Test) goto done; do { Body Update ; } while (Test) done: While Version Init; while (Test ) { Body Update ; } Goto Version Init; if (!Test) goto done; loop: Body Update ; if (Test) goto loop; done:

“For” Loop Compilation Goto Version result = 1; if (p == 0) goto done;

“For” Loop Compilation Goto Version result = 1; if (p == 0) goto done; loop: if (p & 0 x 1) result *= x; x = x*x; p = p >> 1; if (p != 0) goto loop; done: Init; if (!Test) goto done; loop: Body Update ; if (Test) goto loop; done: Init result = 1 Update p = p >> 1 Test p != 0 Body { if (p & 0 x 1) result *= x; x = x*x; }

typedef enum {ADD, MULT, MINUS, DIV, MOD, BAD} op_type; char unparse_symbol(op_type op) { switch

typedef enum {ADD, MULT, MINUS, DIV, MOD, BAD} op_type; char unparse_symbol(op_type op) { switch (op) { case ADD : return '+'; case MULT: return '*'; case MINUS: return '-'; case DIV: return '/'; case MOD: return '%'; case BAD: return '? '; } } Switch Statements Implementation Options n Series of conditionals l Good if few cases l Slow if many n Jump Table l Lookup branch target l Avoids conditionals l Possible when cases are small integer constants n GCC l Picks one based on case structure n Bug in example code l No default given

Jump Table Structure Switch Form switch(op) { case val_0: Block 0 case val_1: Block

Jump Table Structure Switch Form switch(op) { case val_0: Block 0 case val_1: Block 1 • • • case val_n-1: Block n– 1 } Jump Table jtab: Targ 0 Jump Targets Targ 0: Code Block 0 Targ 1: Code Block 1 Targ 2: Code Block 2 Targ 1 Targ 2 • • • Targn-1 • • • Approx. Translation target = JTab[op]; goto *target; Targn-1: Code Block n– 1

Switch Statement Example Branching Possibilities typedef enum {ADD, MULT, MINUS, DIV, MOD, BAD} op_type;

Switch Statement Example Branching Possibilities typedef enum {ADD, MULT, MINUS, DIV, MOD, BAD} op_type; Enumerated Values char unparse_symbol(op_type op) { switch (op) { • • • } } Setup: unparse_symbol: pushl %ebp movl %esp, %ebp movl 8(%ebp), %eax cmpl $5, %eax ja. L 49 jmp *. L 57(, %eax, 4) ADD MULT MINUS DIV MOD BAD 0 1 2 3 4 5 # Setup # eax = op # Compare op : 5 # If > goto done # goto Table[op]

Assembly Setup Explanation Symbolic Labels n Labels of form. LXX translated into addresses by

Assembly Setup Explanation Symbolic Labels n Labels of form. LXX translated into addresses by assembler Table Structure n n Each target requires 4 bytes Base address at. L 57 Jumping jmp. L 49 n Jump target is denoted by label. L 49 jmp *. L 57(, %eax, 4) n Start of jump table denoted by label. L 57 n Register %eax holds op n n Must scale by factor of 4 to get offset into table Fetch target from effective Address. L 57 + op*4

Jump Table Contents Targets & Completion . section. rodata . align 4. L 57:

Jump Table Contents Targets & Completion . section. rodata . align 4. L 57: . long. L 51 #Op = 0. long. L 52 #Op = 1. long. L 53 #Op = 2. long. L 54 #Op = 3. long. L 55 #Op = 4. long. L 56 #Op = 5 . L 51: movl $43, %eax # ’+’ jmp. L 49. L 52: movl $42, %eax # ’*’ jmp. L 49. L 53: movl $45, %eax # ’-’ jmp. L 49. L 54: movl $47, %eax # ’/’ jmp. L 49. L 55: movl $37, %eax # ’%’ jmp. L 49. L 56: movl $63, %eax # ’? ’ # Fall Through to. L 49 Enumerated Values ADD MULT MINUS DIV MOD BAD 0 1 2 3 4 5

Switch Statement Completion. L 49: movl %ebp, %esp popl %ebp ret # Done: #

Switch Statement Completion. L 49: movl %ebp, %esp popl %ebp ret # Done: # Finish Puzzle n What value returned when op is invalid? Answer n Register %eax set to op at beginning of procedure n This becomes the returned value Advantage of Jump Table n Can do k-way branch in O(1) operations

Object Code Setup n n Label. L 49 becomes address 0 x 804875 c

Object Code Setup n n Label. L 49 becomes address 0 x 804875 c Label. L 57 becomes address 0 x 8048 bc 0 08048718 <unparse_symbol>: 8048718: 55 pushl %ebp 8048719: 89 e 5 movl %esp, %ebp 804871 b: 8 b 45 08 movl 0 x 8(%ebp), %eax 804871 e: 83 f 8 05 cmpl $0 x 5, %eax 8048721: 77 39 ja 804875 c <unparse_symbol+0 x 44> 8048723: ff 24 85 c 0 8 b jmp *0 x 8048 bc 0(, %eax, 4)

Object Code (cont. ) Jump Table n Doesn’t show up in disassembled code Can

Object Code (cont. ) Jump Table n Doesn’t show up in disassembled code Can inspect using GDB gdb code-examples (gdb) x/6 xw 0 x 8048 bc 0 n l Examine 6 hexadecimal format “words” (4 -bytes each) l Use command “help x” to get format documentation 0 x 8048 bc 0 <_fini+32>: 0 x 08048730 0 x 08048737 0 x 08048740 0 x 08048747 0 x 08048750 0 x 08048757

Extracting Jump Table from Binary Jump Table Stored in Read Only Data Segment (.

Extracting Jump Table from Binary Jump Table Stored in Read Only Data Segment (. rodata) n Various fixed values needed by your code Can examine with objdump code-examples –s –-section=. rodata n Show everything in indicated segment. Hard to read n Jump table entries shown with reversed byte ordering Contents of section. rodata: 8048 bc 0 30870408 37870408 40870408 47870408 0. . . 7. . . @. . . G. . . 8048 bd 0 50870408 57870408 46616374 28256429 P. . . W. . . Fact(%d) 8048 be 0 203 d 2025 6 c 640 a 00 43686172 203 d 2025 = %ld. . Char = % … n E. g. , 30870408 really means 0 x 08048730

Disassembled Targets 8048730: b 8 2 b 00 00 00 8048735: eb 25 8048737:

Disassembled Targets 8048730: b 8 2 b 00 00 00 8048735: eb 25 8048737: b 8 2 a 00 00 00 804873 c: eb 1 e 804873 e: 89 f 6 8048740: b 8 2 d 00 00 00 8048745: eb 15 8048747: b 8 2 f 00 00 00 804874 c: eb 0 e 804874 e: 89 f 6 8048750: b 8 25 00 00 00 8048755: eb 05 8048757: b 8 3 f 00 00 00 n n movl $0 x 2 b, %eax jmp 804875 c <unparse_symbol+0 x 44> movl $0 x 2 a, %eax jmp 804875 c <unparse_symbol+0 x 44> movl %esi, %esi movl $0 x 2 d, %eax jmp 804875 c <unparse_symbol+0 x 44> movl $0 x 2 f, %eax jmp 804875 c <unparse_symbol+0 x 44> movl %esi, %esi movl $0 x 25, %eax jmp 804875 c <unparse_symbol+0 x 44> movl $0 x 3 f, %eax movl %esi, %esi does nothing Inserted to align instructions for better cache performance

Matching Disassembled Targets Entry 0 x 08048730 0 x 08048737 0 x 08048740 0

Matching Disassembled Targets Entry 0 x 08048730 0 x 08048737 0 x 08048740 0 x 08048747 0 x 08048750 0 x 08048757 8048730: b 8 2 b 00 00 00 8048735: eb 25 8048737: b 8 2 a 00 00 00 804873 c: eb 1 e 804873 e: 89 f 6 8048740: b 8 2 d 00 00 00 8048745: eb 15 8048747: b 8 2 f 00 00 00 804874 c: eb 0 e 804874 e: 89 f 6 8048750: b 8 25 00 00 00 8048755: eb 05 8048757: b 8 3 f 00 00 00 movl jmp movl jmp movl

Sparse Switch Example /* Return x/111 if x is multiple && <= 999. -1

Sparse Switch Example /* Return x/111 if x is multiple && <= 999. -1 otherwise */ int div 111(int x) { switch(x) { case 0: return 0; case 111: return 1; case 222: return 2; case 333: return 3; case 444: return 4; case 555: return 5; case 666: return 6; case 777: return 7; case 888: return 8; case 999: return 9; default: return -1; } } n Not practical to use jump table l Would require 1000 entries n Obvious translation into if-then-else would have max. of 9 tests

Sparse Switch Code movl 8(%ebp), %eax cmpl $444, %eax je L 8 jg L

Sparse Switch Code movl 8(%ebp), %eax cmpl $444, %eax je L 8 jg L 16 cmpl $111, %eax je L 5 jg L 17 testl %eax, %eax je L 4 jmp L 14 # get x # x: 444 # x: 111 n Compares x to possible case values n Jumps different places depending on outcomes. . . # x: 0 L 5: movl $1, %eax jmp L 19 L 6: movl $2, %eax jmp L 19 . . . L 7: movl $3, %eax jmp L 19 L 8: movl $4, %eax jmp L 19. . .

Sparse Switch Code Structure < < 111 = 444 = > 4 > 777

Sparse Switch Code Structure < < 111 = 444 = > 4 > 777 < = 1 7 0 -1 = 0 222 2 -1 n 555 = n > 5 333 = 3 Organizes cases as binary tree Logarithmic performance < = -1 888 = > 8 666 = 6 -1 999 = 9

Summarizing C Control Standard Techniques n n if-then-else do-while All loops converted to do-while

Summarizing C Control Standard Techniques n n if-then-else do-while All loops converted to do-while form n while n n switch Large switch statements use jump tables n Assembler Control n n jump Conditional jump Compiler n Must generate assembly code to implement more complex control Conditions in CISC machines generally have condition code registers Conditions in RISC n n n Use general registers to store condition information Special comparison instructions E. g. , on Alpha: cmple $16, 1, $1 l Sets register $1 to 1 when Register $16 <= 1